• Title/Summary/Keyword: Relative degree

Search Result 1,161, Processing Time 0.03 seconds

Control of a Ball and Beam System using Switching Control Method (스위칭 제어 기법을 이용한 볼-빔 시스템의 제어)

  • Lee, Kyung-Tae;Jeong, Min-Gil;Choi, Ho-Lim
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.1
    • /
    • pp.72-81
    • /
    • 2017
  • We propose a switching control scheme for the control of a ball and beam system. It was reported in [4] that a ball and beam system is a nonlinear system which has an ill-defined relative degree. So, the traditional control approaches have been mostly either Jacobian-based control or approximate input-output linearized control in nature. In this paper, motivated by [7], we combine these two traditional control approaches and operate each controller via a pre-designed switching logic so that the improved control result can be obtained without any excessive use of control input. Switching algorithm is developed based on both analysis and actual experimental observation. We verify the effectiveness of our proposed controller via actual experimental results.

The ROK Nuclear Power Programme -Some Aspects of Radioactive Waste Management in the Nuclear Fuel Cycle-

  • West, P.J.
    • Nuclear Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.194-213
    • /
    • 1980
  • The paper describes and quantifies the wastes arising in the nuclear fuel cycle for Light Water Reactors, Heavy Water Reactors and Fast Breeder Reactors. The management and disposal technologies are indicated, together with their environmental impacts. Both once-through and uranium-plutonium recycle systems are evaluated, and comparisons are made on the basis of tingle reference technologies for waste management, and for one gigawatt/year of electricity generation. Environmental impacts are assessed, particularly that of health and safety, and a reference costing system is applied purely as a basis for comparing the fuel cycles. From this study it call be concluded generally that the relative differences of the impacts of waste management and disposal between the selected fuel cycles are not decisive factors in choosing a fuel cycle. Employing the technologies assumed, the radioactive wastes from any of the fuel cycles studied can be managed and disposed of with a high degree of safety and without undue risk to man or the environment. The cost of waste management and disposal is only a few percent of the value of the electricity generated and does not vary greatly between fuel cycles.

  • PDF

Comparing the Stability of Geometrically rigid Tricyclopropyl Carbinyl Cations by $^{19}$F NMR Spectroscopy

  • Shin, Jung-Hyu;Kim, Kyong-Tae;Shin, Hun-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.3
    • /
    • pp.144-145
    • /
    • 1987
  • The relative stability as function of geometry in the rigid tricyclopropylcarbinyl cations with varied bond angle (${\alpha}$) between the plane of cyclopropane ring and the bond connecting cyclopropane ring to cationic carbon was examined by $^{19}F$ nmr spectroscopy. 7-p-Fluorophenyltricyclo[2.2.2.$0^{2,6}$]octan-7-yl(4) and 8-p-fluorophenyltricyclo[3.2.2.$0^{2,7}$]nonan-8-yl cation (8) were generated from corresponding tertiary alcohols under stable ion conditions, and their $^{19}F$ chemical shifts were compared with those of model compounds such as 7-nortricyclyl cation (3) and tricyclo[3.3.1.$0^{2,7}$]octan-8-yl cation (7). Consequently, it is concluded that the varied orientation of bond angle (${\alpha}$) within in the bisected conformation does not affect degree of the charge delocalization into cyclopropane ring.

Solid-State $^1H$ and $^{29}Si$ NMR Studies of Silicate and Borosilicate Gel to Glass Conversion

  • 양경화;우애자
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.8
    • /
    • pp.696-699
    • /
    • 1996
  • Silicate and borosilicate gels were prepared by the sol-gel process and thermally treated in the 150-850 ℃ temperature range. Solid-state 1H MAS and 29Si CP/MAS NMR spectroscopy were used to investigate the effects of heat treatments on the silicate gel to glass conversion process. The 1H NMR isotropic chemical shifts and the relative intensities of hydrogen bonded and isolated silanol groups have been used to access the information concerning the dehydration process on the silicate gel surface. The 29Si NMR isotropic chemical shifts affected by the local silicon environment have been used to determine the degree of crosslinking, i.e. the number of siloxane bonds. These NMR results suggest that the silicate gel to glass conversion process is occurred by two stages which are dependent on the temperature; (1) the formation of particles up to 450 ℃ and (2) the formation of large particles by aggregation of each separated single particle above 450 ℃. In addition, the effects of B atom on the formation of borosiloxane bonds in borosilicates have been discussed.

Catalytic Cyclopolymerization and Copolymerization of Diethyl Dipropargylmalonate by (toluene)Mo$(CO)_3

  • Jeon, Sang Jin;Sim, Sang Cheol;Jo, Chan Sik;Kim, Tae Jeong;Gal, Yeong Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.10
    • /
    • pp.1044-1046
    • /
    • 2000
  • Catalytic copolymerization of diethyl dipropargylmalonate (DEDPM) and phenylacetylene (PA) by Mo(CO)6 and (toluene) Mo(CO)3/chloranil has resulted in the expected copolymer consiting of a polyene backbone with five-and/or six-membered rings and th e PPA structure. Both complexes exhibited not only varying degree of catalytic activity depending upon the relative mole ratio of two monomers but also characterize the types of coploymers. The former yields the polyene backbone containing only five-membered rings as well as PA while the latter produces the polymers consisting of both five-and six-membered ring structure. Comparative studies show that Mo(CO)6 exhibits reactivity toward DEDPM alone, thus catalyzing initially metathesis cyclopoly-merization of DEDPM followed by copolymerization with PA while the (toluene)Mo(CO)3/chloranil system shows affinity for both PA and DEDPM.

2-Hydroxyacetophenone-aroyl Hydrazone Derivatives as Corrosion Inhibitors for Copper Dissolution in Nitric Acid Solution

  • A. S. Fouda;M. M. Gouda;S. I. Abd El-Rahman
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.11
    • /
    • pp.1085-1089
    • /
    • 2000
  • The effect of 2-hydroxyacetophenone-aroyl hydrazone derivatives on the inhibition of copper corrosion in 3N nitric acid solution at 303 K was investigated by galvanostatic polarization and thermometric techniques. A significant decrease in the cor rosion rate of copper was observed in the presence of the investigated compounds. The corrosion rate was found to depend on the nature and concentrations of the inhibitors. The degree of surface coverage of the adsorbed inhibitors is determined from polarization measurements, and it was found that the results obey the Frumkin adsorption isotherm. The inhibitors acted as mixed-type inhibitors, but the cathode is more polarized. The relative inhibitive efficiency of these compounds has been explained on the basis of structure dependent electron donor properties of the inhibitors and the nature of the metal-inhibitor interaction at the surface. Also, some thermodynamic data for the adsorption process ( ΔGa* and f ) are calculated and discussed.

Control of Wettability Using Regularly Ordered Two-Dimensional Polymeric Wavy Substrates

  • Yi, Dong Kee
    • Nano
    • /
    • v.13 no.10
    • /
    • pp.1850120.1-1850120.9
    • /
    • 2018
  • Two-dimensional poly(dimethylsiloxane) (PDMS) films with wavy patterns were studied in order to investigate reversible and irreversible wetting effects. Pre-strained, surface oxidized layers of PDMS were used to form relieved wavy geometries, on which hydrophobic functionalization was carried out in order to produce irreversible wetting effects. Wavy-patterned PDMS films showed time-dependent reversible wetting effects. The degree of surface wettability could be tuned by the choice of wavy groove geometries. And the groove geometries were controlled via $O_2$ plasma treatment and mechanical pre-straining. The pre-strained, buckled PDMS films were applied to the fabrication of hydrophobic polystyrene nano-patterns using colloidal self-assembly, where the colloids were arrayed in two-dimensional way. The wavy polystyrene films were found to be more hydrophobic relative to flat polystyrene films. The grooving methodology used in this study could be applied to enhancing the hydrophobicity of other types of polymeric thin films, eliminating the need for chemical treatment.

Reducing sugar content in processed foods using high intensity sweeteners (고감미도 감미료(High Intensity Sweeteners)를 이용한 당류저감화)

  • Han, Tae-Chul;Seo, Il;Lim, Hye-Jin;Kih, Min-Ji
    • Food Science and Industry
    • /
    • v.49 no.3
    • /
    • pp.29-39
    • /
    • 2016
  • Recently, due to the cognition that obesity is the cause of adult diseases, interests of consumers in low-sugar and low-calorie foods are growing more and more. While various policies are being implemented to reduce sugar contents in processed foods, the reduced sweetness caused by lesser sugar content is complemented by using high-intensity sweeteners. Some of the typical high-intensity sweeteners are sucralose, aspartame, acesulfame potassium and stevia, etc. Since the relative sweetness degree, sweetness profile, and physical properties of these sweeteners should be different from one another, it is important that all these characteristics are well-understood before applying them. Thus, the objective of this study is to introduce the properties and applications of high-intensity sweeteners in order to reduce sugar content of processed foods.

Computational visualization for condensational growth of micro-particles in the pipe flow through a porous material (다공성 물질을 통과하는 관내 유동에서의 미세 입자 응축성장 전산 가시화)

  • Moon, Jihoo;Kim, Daegyoum
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.2
    • /
    • pp.63-69
    • /
    • 2022
  • In this study, we numerically simulate the condensational growth of micron-sized particles traveling through a pipe filled with humidified air. Using the finite volume method and Lagrangian particle tracking technique, the mixture of particle-laden flow with moist air in a T-juction pipe is simulated. The condensational growth of particles is calculated by considering the mass transfer of vapor in the air onto the particle surface. The results indicate that the growth rate of the particles increases as the relative humidity of air is higher. Furthermore, the placement of a porous media with low permeability in the pipe could enhance the degree of condensational growth.

A novel nonlinear gas-spring TMD for the seismic vibration control of a MDOF structure

  • Rong, Kunjie;Lu, Zheng
    • Structural Engineering and Mechanics
    • /
    • v.83 no.1
    • /
    • pp.31-43
    • /
    • 2022
  • A nonlinear gas-spring tuned mass damper is proposed to mitigate the seismic responses of the multi-degree-of-freedom (MDOF) structure, in which the nine-story benchmark model is selected as the controlled object. The nonlinear mechanical properties of the gas-spring are investigated through theoretical analysis and experiments, and the damper's control parameters are designed. The control performance and damping mechanism of the proposed damper attached to the MDOF structure are systematically studied, and its reliability is also explored by parameter sensitivity analysis. The results illustrate that the nonlinear gas-spring TMD can transfer the primary structure's vibration energy from the lower to the higher modes, and consume energy through its own relative movement. The proposed damper has excellent "Reconciling Control Performance", which not only has a comparable control effect as the linear TMD, but also has certain advantages in working stroke. Furthermore, the control parameters of the gas-spring TMD can be determined according to the external excitation amplitude and the gas-spring's initial volume.