• 제목/요약/키워드: Relative compaction

검색결과 132건 처리시간 0.022초

CICC manufacturing technology as a factor affecting on their performance during full-size testing

  • Kaverin, D.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제22권4호
    • /
    • pp.24-30
    • /
    • 2020
  • The test results of the ITER toroidal field conductors demonstrated a decrease of the current sharing temperature (Tcs) with an increase in the number of electromagnetic cycles in general. This is associating with several factors. One of them is the superconducting Nb3Sn filaments cracking and another one is the redistribution of the relative deformation of the Nb3Sn strands under Lorentz forces. Despite these factors, some conductors have shown the absence or significantly less degradation of Tcs during electromagnetic cycling. This article considers another possible reason for a more stable conductors Tcs behavior, namely, the local compression of Nb3Sn wires in the cross section of a conductor. In this article presents the results of a quantitative analysis Nb3Sn superconducting filaments cracking of strands extracted from a conductor that has passed electromagnetic cycling and the model of a conductor compaction, as well as calculation results based on this model are presented also.

An Experiment of Consolidation Behavior for Partly and Fully Penetrated SCP Ground

  • Jung, Jong-Bum;Moriwaki, Takeo;Lee, Kang-Il;Kang, Kwon-Su;Park, Byong-Kee
    • 한국지반공학회논문집
    • /
    • 제15권3호
    • /
    • pp.3-16
    • /
    • 1999
  • 본 연구에서 미관통과 관통 샌드컴팩션파일(SCP) 개량지반에 대하여 일차원 압밀거동을 조사하기 위하여 실내모형실험을 실시하였다. 모델점토지반에 간극수압계, 토압계, 다이얼게이지등을 설치하여 SCP 개량지반의 압밀침하량과 응력분담비등을 측정하였다. 실험 결과, 미관통 SCP 지반의 압밀침하량은 관통 SCP 지반의 압밀침하량 보다 더 크게, 응력분담비는 더 적게 나타났다. 또한 SCP 개량지반의 응력분담비는 압밀시간, 지반심도, 상대밀도, 치환율과 관통률에 따라 변화됨을 알 수 있었다.

  • PDF

경운작업에 의한 토양 역학적 특성의 변이 특성 (Analysis of Variations in Mechanical Properties of Soil by Tillage Operations)

  • 박준걸;이규승;조성찬;노광모;정선옥;장영창
    • Journal of Biosystems Engineering
    • /
    • 제32권4호
    • /
    • pp.215-222
    • /
    • 2007
  • In the study, the cone index, the cohesion and the internal friction angle of soil were measured before and after tillage in order to suggest relative improvement in soil properties by comparing the two measured values before and after tillage. The tillage methods tested in the study were five combinations of plowing and rotovating; one plow tillage operation, one plow followed by one rotary, one plow followed by two rotary, one rotary without plow and two rotary without plow. The experiments were performed in a soil bin in Sunggyunkwan Univ. and in four selected test fields in Yeoju, Seodun-Dong, Suwon (especially, two different fields) and Chungju. In general, the internal friction angle and cohesion of soil increased with the increase of soil compaction. After applying the tillage operations, the internal friction angle reduced by 14 degree and the cohesion decreased up to about $2.2N/cm^2$ on the soil bin in comparison with those before tillage. The two values, however, reduced by 9 degree and up to about $1.0N/cm^2$ on the tested fields. The CIs for all the tillage operations on the soil bin and on 4 different test fields were decreased by 800 kPa in comparison with those before tillage. The best combination of tillage operations for decreasing the CIs of soil was one plow operation followed by one rotary. The CIs for one plow operation followed by two rotary were slightly higher than that for one plow operation followed by one rotary because one plow operation followed by two rotary crushed down the soil excessively, so that the porosity of soil decreased.

Investigation of Strength Characteristics of Ferrous Slag and Waste Concrete in Water Contacting Environment by Exposure to Raining Events

  • Kim, Byung-Gon;Shin, Hyunjin;Lee, Seunghak;Park, Junboum
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제21권2호
    • /
    • pp.1-7
    • /
    • 2016
  • Ferrous slag is a by-product from steel making process and waste concrete is generated from construction activities. Large part of ferrous slag and waste concrete are recycled as construction materials. However, Ca2+ leaching out of ferrous slag and waste concrete in the water-contacting environment can cause a strength change. Strength can be reduced due to the dissolution of solid form of CaO which is one of the main contents of ferrous slag and waste concrete. On the other hand, strength can be enhanced due to the pozzolanic reaction of cementitious components with water. In this study, steelmaking slag, blast furnace slag, and waste concrete were aged by exposure to raining events, and the change of their compaction and shear strength characteristics was investigated. Optimum moisture content of all materials used in this study increased with aging period while maximum dry unit weight slightly decreased, implying that the relative contents of fine particles increased as the CaO solid particles were dissolved. Internal friction angle and shear strength of recycled materials also increased with aging period, indicating that the materials became denser by the decrease of void ratio attributed to the fine particles generated during the weathering process and the development of cementitious compounds increasing the bonding and interlocking forces between the particles. The results of this study demonstrated that mechanical strength of recycled materials used as construction materials has little chance to be deteriorated during their service life.

소결 온도와 유지 시간에 따른 Fe-Cr-Al 다공성 금속의 제조 (Fabrication of Fe-Cr-Al Porous Metal with Sintering Temperature and Times)

  • 구본욱;이수인;박다희;윤중열;김병기
    • 한국분말재료학회지
    • /
    • 제22권2호
    • /
    • pp.100-104
    • /
    • 2015
  • The porous metals are known as relatively excellent characteristic such as large surface area, light, lower heat capacity, high toughness and permeability. The Fe-Cr-Al alloys have high corrosion resistance, heat resistance and chemical stability for high temperature applications. And then many researches are developed the Fe-Cr-Al porous metals for exhaust gas filter, hydrogen reformer catalyst support and chemical filter. In this study, the Fe-Cr-Al porous metals are developed with Fe-22Cr-6Al(wt) powder using powder compaction method. The mean size of Fe-22Cr-6Al(wt) powders is about $42.69{\mu}m$. In order to control pore size and porosity, Fe-Cr-Al powders are sintered at $1200{\sim}1450^{\circ}C$ and different sintering maintenance as 1~4 hours. The powders are pressed on disk shapes of 3 mm thickness using uniaxial press machine and sintered in high vacuum condition. The pore properties are evaluated using capillary flow porometer. As sintering temperature increased, relative density is increased from 73% to 96% and porosity, pore size are decreased from 27 to 3.3%, from 3.1 to $1.8{\mu}m$ respectively. When the sintering time is increased, the relative density is also increased from 76.5% to 84.7% and porosity, pore size are decreased from 23.5% to 15.3%, from 2.7 to $2.08{\mu}m$ respectively.

방조제 축조 예정지반의 지진에 의한 액상화 거동 평가 (A Study on the Evaluation of Dynamic Behavior and Liquefaction Cau8ed by Earthquake of Sea Dike Structures on the Ground)

  • 도덕현;장병욱;고재만
    • 한국농공학회지
    • /
    • 제35권2호
    • /
    • pp.43-56
    • /
    • 1993
  • The laboratory tests are performed on how the liquefaction potential of the sea dike structures on the saturated sand or silty sand seabed could be affected due to earthquake before and after construction results are given as follows ; 1. Earthquake damages to sea dike structures consist of lateral deformation, settlement, minor abnormality of the structures and differential settlement of embankments, etc. It is known that severe disasters due to this type of damages are not much documented. Because of its high relative cost of the preventive measures against this type of damages, the designing engineer has much freedom for the play of judgement and ingenuity in the selection of the construction methods, that is, by comparing the cost of the preventive design cost at a design stage to reconstruction cost after minor failure. 2. The factors controlling the liquefaction potential of the hydraulic fill structure are magnitude of earthquake(max. surface velocity), N-value(relative density), gradation, consistency(plastic limit), classification of soil(G & vs), ground water level, compaction method, volumetric shear stress and strain, effective confining stress, and primary consolidation. 3. The probability of liquefaction can be evaluated by the simple method based on SPT and CPT test results or the precise method based on laboratory test results. For sandy or silty sand seabed of the concerned area of this study, it is said that evaluation of liquefaction potential can be done by the one-dimensional analysis using some geotechnical parameters of soil such as Ip, Υt' gradation, N-value, OCR and classification of soils. 4. Based on above mentioned analysis, safety factor of liquefaction potential on the sea bed at the given site is Fs =0.84 when M = 5.23 or amax= 0.12g. With sea dike structures H = 42.5m and 35.5m on the same site Fs= 3.M~2.08 and Fs = 1.74~1.31 are obtained, respectively. local liquefaction can be expected at the toe of the sea dike constructed with hydraulic fill because of lack of constrained effective stress of the area.

  • PDF

시중 즉석 조리 면의 Back Extrusion 텍스처 데이터에 대한 Partial Least Square Regression 분석 (Analysis of Partial Least Square Regression on Textural Data from Back Extrusion Test for Commercial Instant Noodles)

  • 김수경;이승주
    • 산업식품공학
    • /
    • 제14권1호
    • /
    • pp.75-79
    • /
    • 2010
  • 시중 즉석 면류의 관능적 성질과 back extrusion test 데이터에 대하여 partial least square regression(PLSR)을 실시하였다. 즉석유탕면 8종과 즉석비유탕면 2종에 대한 관능적 속성으로서 경도(A), 탄성(B), 껄끄러운 정도(C), 이에 박히는 정도(D), 굵기감(E)를 검사하였고, 실험 데이터로 힘-변형 곡선 전체를 사용하였다. PLSR의 회귀계수는 힘-변형곡선의 압착단계, 항복단계, 압출단계로 크게 구분되어 각관능속성에 대한 특유의 양 또는 음의 효과를 나타냈다. PLSR의 상관계수는 E>D>A>B>C, 오차(root mean square error of prediction expressed in sensory units)는 D>C>E>B>A, 예측능(relative ability of prediction)는 D>C>E>B>A 로 나타나 종합적으로 '이에 박히는 정도'가 PLSR의 적용에 가장 우수하게 나타났다. '경도'는 예측능은 낮았지만 상관성은 높아서 시료간 순위의 결정에 합당하게 평가되었다.

Full-scale investigations into installation damage of nonwoven geotextiles

  • Sardehaei, Ehsan Amjadi;Mehrjardi, Gholamhosein Tavakoli;Dawson, Andrew
    • Geomechanics and Engineering
    • /
    • 제17권1호
    • /
    • pp.81-95
    • /
    • 2019
  • Due to the importance of soil reinforcement using geotextiles in geotechnical engineering, study and investigation into long-term performance, design life and survivability of geotextiles, especially due to installation damage are necessary and will affect their economy. During installation, spreading and compaction of backfill materials, geotextiles may encounter severe stresses which can be higher than they will experience in-service. This paper aims to investigate the installation damage of geotextiles, in order to obtain a good approach to the estimation of the material's strength reduction factor. A series of full-scale tests were conducted to simulate the installation process. The study includes four deliberately poorly-graded backfill materials, two kinds of subgrades with different CBR values, three nonwoven needle-punched geotextiles of classes 1, 2 and 3 (according to AASHTO M288-08) and two different relative densities for the backfill materials. Also, to determine how well or how poorly the geotextiles tolerated the imposed construction stresses, grab tensile tests and visual inspections were carried out on geotextile specimens (before and after installation). Visual inspections of the geotextiles revealed sedimentation of fine-grained particles in all specimens and local stretching of geotextiles by larger soil particles which exerted some damage. A regression model is proposed to reliably predict the installation damage reduction factor. The results, obtained by grab tensile tests and via the proposed models, indicated that the strength reduction factor due to installation damage was reduced as the median grain size and relative density of the backfill decreases, stress transferred to the geotextiles' level decreases and as the as-received grab tensile strength of geotextile and the subgrades' CBR value increase.

입자결합모델을 이용한 동적콘관입시험(DCPT)의 수치해석 모델링에 관한 연구 (A Study on Numerical Modeling of Dynamic CPT using Particle Flow Code)

  • 유광호;이창수;최준성
    • 한국도로학회논문집
    • /
    • 제16권2호
    • /
    • pp.43-52
    • /
    • 2014
  • PURPOSES : To solve problems in current compaction control DCPT(Dynamic Cone Penetrometer Test), highly correlated with various testing methods, simple, and economic is being applied. However, it、s hard to utilize DCPT results due to the few numerical analyses for DCPT have been performed and the lack of data accumulation. Therefore, this study tried to verify the validation of numerical modeling for DCPT by comparing and analyzing the results of numerical analyses with field tests. METHODS: The ground elastic modulus and PR(Penetration Rate) value were estimated by using PFC(Particle Flow Code) 3D program based on the discrete element method. Those values were compared and analyzed with the result of field tests. Also, back analysis was conducted to describe ground elastic modulus of field tests. RESULTS : Relative errors of PR value between the numerical analyses and field tests were calculated to be comparatively low. Also, the relationship between elastic modulus and PR value turned out to be similar. CONCLUSIONS : Numerical modeling of DCPT is considered to be suitable for describing field tests by carrying out numerical analysis using PFC 3D program.

Application of Taguchi method in optimization of process parameters of ODS tungsten heavy alloys

  • Sayed, Mohamed A.;Dawood, Osama M.;Elsayed, Ayman H.;Daoush, Walid R.
    • Advances in materials Research
    • /
    • 제6권1호
    • /
    • pp.79-91
    • /
    • 2017
  • In the present work, a design of experiment (DOE) technique using Taguchi method, has been applied to optimize the properties of ODS tungsten heavy alloys(WHAs). In this work Taguchi method involves nine experiments groups for four processing parameters (compaction pressure, sintering temperature, binding material type, and oxide type) with three levels was implemented. The signal-to-noise (S/N) ratio and analysis of variance (ANOVA) were employed to obtain the optimal process parameter levels and to analyze the effect of these parameters on density, electrical conductivity, hardness and compressive strength values. The results showed that all the chosen factors have significant effects on all properties of ODS tungsten heavy alloys samples. The density, electrical conductivity and hardness increases with the increase in sintering temperature. The analysis of the verification experiments for the physical properties (density and Electrical conductivity) has shown that Taguchi parameter design can successfully verify the optimal parameters, where the difference between the predicted and the verified values of relative density and electrical conductivity is about 1.01% and 1.15% respectively.