• 제목/요약/키워드: Relative Sound Level

검색결과 53건 처리시간 0.023초

Optimization of Operational and Constitutional Geometric Parameters for Thermoaoustic Energy Output

  • Oh, Seung Jin;Shin, Sang Woong;Chen, Kuan;Chun, Wongee
    • 한국태양에너지학회 논문집
    • /
    • 제34권1호
    • /
    • pp.28-38
    • /
    • 2014
  • The effects of geometric parameters (stack position, stack length, resonator tube length) and varying input power over acoustic energy output were investigated. The acoustic laser kit (Garret 2000) was used for the construction of TA lasers. A series of sound pressure level measurements in different orientations did not differ significantly confirming that the sound wave generated could be assumed as a spherical wave. An increase in acoustic pressure was recorded with respective increase in input power, stack and resonator tube lengths owing to their relative influence over heat transfer rate and critical temperature gradient across the stack.

큰 반경의 원운동을 하는 점 음원에 의한 저주파수 스위싱 음장 분석 (Study on Low Frequency Swishing Sound Field by a Singularity in Circular Motion with Large Radius)

  • 이광세;정철웅
    • 한국소음진동공학회논문집
    • /
    • 제24권7호
    • /
    • pp.569-574
    • /
    • 2014
  • In order to investigate low frequency swishing noise of wind turbines, acoustic source model using a singularity in circular motion is introduced to derive analytic solution of Lowson acoustic analogy in time domain. Results in time and frequency domains computed by the solution show apparent modulation of amplitude and frequency. The solution indicates that time histories of acoustic pressure at receiver points varied significantly according to receiver's directional location, even when the retarded time distributions are similar. However, the corresponding time-averaged spectra of sound pressure at the receiver locations where the retarded time distributions are almost same are not significantly different. It can be inferred from these results that the time-averaged sound pressure spectra which cannot take into account the detailed difference in the time-variation of wind turbine noise may not represent the sound quality of wind turbines due to its swishing. Finally, as an introduction of procedure to quantify low frequency swishing noise level, relative variation of overall sound pressure level is obtained using tonal low frequency noise model.

3.5 kHz 지층단면도에 나타난 여수해만의 퇴적물 분포 (Sediment Distribution of the Yeosu Sound on the Southern Coast of Korea Based on the 3.5 kHz Profiles)

  • 오진용;이연규;윤혜수;김성렬;최정민
    • 자원환경지질
    • /
    • 제33권5호
    • /
    • pp.425-434
    • /
    • 2000
  • The 3.5 KHz seismic survey was carried out for studying the distribution pattern of the unconsolidated sediments of the Yeosu Sound on the southern coast of the Korean Peninsula. Field data originally recorded in analog are converted and processed digitally to recover the high-resolution acoustic profiles. Across the north-south trending channel with the depth of 20~30 m, different seismic facies types are observed in the top section of sediments. The western part is characterized by the continuous high-amplitude subparallel reflectors within which the acoustic turbidity as a token of the presence of gas is commonly observed, whereas the counterpart largely shows poor reflectors and has shallow acoustic basement toward the north. The dissimilarity of the seismic expression across the channel can be interpreted as the result of the change of depositional environment caused by relative sea-level fluctuations of the late-Quaternary. During the last glacial period, the Yeosu Sound was exposed and eroded by the paleo-Seomjin River. By the following rapid rise of sea level, it was covered by the transgressive sand sheet. When the sea level reached near the present position, the muddy sediment has accumulated only in the western part of the Yeosu Sound as its depositional front has moved toward the north. It is partly caused by the asymmetrical tidal current in the Yeosu Sound where the flood near the bottom has stronger current flow and contains more suspended sediments.

  • PDF

한국인과 미국인이 발화한 영어전설모음의 상대적 거리 비교 (A Comparative Study of Relative Distances among English Front Vowels Produced by Korean and American Speakers)

  • 양병곤
    • 말소리와 음성과학
    • /
    • 제5권4호
    • /
    • pp.99-107
    • /
    • 2013
  • The purpose of this study is to examine the relative distances among English front vowels in a message produced by 47 Korean and American speakers in order to better instruct pronunciation skills of English vowels for Korean English learners. A Praat script was developed to collect the first and second formant values(F1 and F2) of eight words in each sound file which was recorded from an internet speech archive. Then, the Euclidean distances were measured between the three vowel pairs: [i-ɛ], [i-ɪ], and [ɛ-æ]. The first vowel pair [i-ɛ] was set as the reference from which the relative distances of the other two vowel pairs were measured in percent in order to compare the vowel sounds among speakers of different vocal tract lengths. Results show that F1 values of the front vowels produced by the Korean and American speakers increased from the high front vowel to the low front vowel wih differences among the groups. The Korean speakers generally produced the front vowels with smaller jaw openings than the American speakers did. Secondly, the relative distance of the high front vowel pair [i-ɪ] showed a significant difference between the Korean and American speakers while that of the low front vowel pair [ɛ-æ] showed a non-significant difference. Finally, the Korean speakers in the higher proficiency level produced front vowels with higher F1 values than those in the lower proficiency level. The author concluded that Korean speakers should produce the front high vowels distinctively by securing sufficient relative distance of the formant values. Further studies would be desirable to examine how strong the Korean speakers' English proficiency correlate with the relative distance of target words of comparable productions.

직물 마찰음에 대한 심리생리적 반응 (Psychophysiological Responses to the Sound of fabric Friction)

  • 조자영;이은주;손진훈;조길수
    • 감성과학
    • /
    • 제4권2호
    • /
    • pp.79-88
    • /
    • 2001
  • 본 연구는 청각적 감성을 만족시키는 의류소재의 개발을 위해 직물 마찰음에 따른 생리반응 측정 및 심리적·주관적 평가를 통해 감성을 측정하여 이들이 음향특성과 갖는 관련성을 밝히고, 또한 심리생리적 반응 간의 상호 관련성을 파악하고자 하였다. 이를 위해 직물 마찰음의 음향특성으로서 LPT, ΔL, Δf, loudness[Z], sharpness[Z]를 계산하였고, 직물 마찰음에 대한 감각·감성 표현어(부드러움, 시끄러움, 유쾌함, 날카로움, 맑음, 거침, 높음)를 이용하여 주관적 평가를 실시하였으며, 생리적 반응으로서 뇌파, 혈류량, 심박변화율, 피부전도수준 등을 측정하였다. 주관적 감각·감성은 대부분 직물소리의 크기와 관련이 깊은 것으로 나타나, loudness(Z)와 총음압 LPT가 증가할수록 시끄럽고 거칠며 딱딱하고 불쾌하며 탁하다고 지각하였다. 또한 LPT는 혈류량의 감소에, loudness(Z)는 피부전도수준의 증가에 각각 영향을 미치며, sharpness(Z)가 높고 ΔL이 작을수록 LF/HF는 증가하는 것으로 나타났다. 심리생리적 반응간의 관련성은 부드럽고 조용하며 맑다고 지각할수록 slow alpha파가 증가하였고, 유쾌하고 매끄럽다고 평가할수록 혈류량은 증가하였다. 또한, 높다고 지각하는 소리에 대해 LF/HF는 증가하였다. 따라서, 직물 마찰음의 특성에 따라 심리생리적 반응에 영향을 미치는 것으로 나타났다.

  • PDF

휴게음식점 주방의 환경위생상태에 관한 조사연구 - 계절별 변화를 중심으로 - (A Study on the Sanitary Condition of Kitchens in Food Court/Cafeterias - An Observation on Seasonal Variations)

  • 김종규;박정영;김중순
    • 한국환경보건학회지
    • /
    • 제38권2호
    • /
    • pp.118-127
    • /
    • 2012
  • Objectives: This study was undertaken to assess the sanitary conditions in the kitchens of food court/cafeterias and determine seasonal variations. Methods: We measured environmental factors (air temperature, relative humidity, illumination intensity, noise level), and dropping airborne microbes (bacteria and fungi) in the kitchens of eight food court/cafeterias in four seasons (January, April, July, and October). Air temperature and relative humidity were measured with in/out thermo-hygrometers at 1.2-1.5 m above floor level. Illuminance measurement was performed through the multiple point method of Korean Standards (KS). Noise level was measured by the standard methods for the examination of environmental pollution (noise and vibration) of Korea. The estimation of dropping airborne bacteria and fungi was performed through use of Koch's method. Results: The highest kitchen air temperature was in July, and the lowest in January. The average temperature surpassed $21^{\circ}C$ throughout the seasons, suggesting a higher temperature than required for the safe handling of food. Humidity in all the kitchens was measured in the range of 50-60%. Half of the kitchens showed illumination intensities below 300 Lux in April. It was found that the sound pressure level of noise in almost all of the kitchens was higher than 85 dB (A). The highest levels of dropping airborne bacteria and fungi were noted in July. The numbers of airborne bacteria were higher than those of fungi. The levels of dropping airborne bacteria and fungi were affected by air temperature, relative humidity, season, and place. Conclusions: This study indicates that the kitchen environments were unqualified to supply safe food. The hygiene level of the kitchens should be improved.

도시 공공장소에 어울리는 환경음의 선호도 및 평가요인 (The Preference and Amenity Factors of the Environmental Sounds Suitable for Urban Public Spaces)

  • 장길수;국찬;김선우
    • 한국소음진동공학회논문집
    • /
    • 제13권11호
    • /
    • pp.890-896
    • /
    • 2003
  • It is said that the goal of the design of good acoustical environment is at first the reduction of undesirable sounds. and in addition the introduction of desirable sounds by which our minds are soothed. The task of creating the desirable sounds leads to the realization of a comfortable acoustic environment and the design of soundscape. It may be an important starting point of soundscape design to select suitable sounds for the target spaces. because each space has a different surrounding condition and requires a special ambient sound. This paper aims to survey preference of the environmental sounds suitable for the public spaces in urban areas such as parks. bus terminals. 35 kinds of natural sounds are. rated by 26 pairs of adjectives. The results of psycho-acoustic experiments are as follows. 1. The proper adjectives for expressing the environmental sounds are classified into 6 groups of comfort, pleasure, fullness. variety, distinctness. and naturalness. 2. Bird singing. murmuring of a stream, artificial sounds. singing of insects and animals are the affirmative rank of preference. 3. Green musics consisted of music and natural sounds are preferred to the pure natural sounds. 4. Sound level relative to background noise causes various preferences to natural sounds in public spaces.

도시 공공장소에 어울리는 환경음의 선호도 분석 (The Preference of the Environmental Sounds Suitable for Urban Public Spaces)

  • 장길수;신훈;국찬
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.1010-1013
    • /
    • 2003
  • It is said that the goal of the design of good acoustical environment is at first the reduction of undesirable sounds, and in addition the introduction of desirable sounds by which our minds are soothed. The task of creating the desirable sounds leads to the realization of a comfortable acoustic environment and the design of soundscape. It may be an important starting point of soundscape design to select suitable sounds for the target spaces, because each space has a different surrounding condition and requires a special ambient sound. This paper aims to survey preference of the environmental sounds suitable for the public spaces in urban areas such as parks, bus terminals. 35 kinds of natural sounds are rated by 26 pairs of adjectives. The results of psycho-acoustic experiments are as follows. 1. The proper adjectives for expressing the environmental sounds are classified into 6 groups of comfort, pleasure, fullness, variety, distinctness, naturalness. 2. Bird singing, murmuring of a stream, artificial sounds, singing of insects and animals are the affirmative order of preference. 3. Green musics consisted of music and natural sounds are preferred to the pure natural sounds. 4. Sound level relative to background noise causes various preferences to natural sounds in public spaces.

  • PDF

지자기 센서를 이용한 양이 보청기의 방향성 이득 조절 연구 (Automatic Directional-gain Control for Binaural Hearing Aids using Geomagnetic Sensors)

  • 양혜진;안선영;정재현;최인용;우지환
    • 대한의용생체공학회:의공학회지
    • /
    • 제37권6호
    • /
    • pp.209-214
    • /
    • 2016
  • Binaural hearing aids with a voice transmitter have been widely used to enhance sound quality in noisy environment. However, this system has a limitation on sound-source localization. In this study, we investigated automatic directional-gain control method using geomagnetic sensors to provide directional information to binaural hearing aid user. The loudness gains of two hearing aids were differently controlled based on the directional information between a speaker position and a viewing direction of hearing aids user. This relative directional information was measured by two geomagnetic sensors on hearing aids user and a speaker. The results showed that the loudness gains were accurately controlled and could provide directional information based on the cue of interaural level differences.

시험 제작한 기계식 백색소음기 수중음원의 음향적 특성 (Acoustical characteristics of prototype mechanical white noise generator as an underwater sound source)

  • 신현옥
    • 수산해양기술연구
    • /
    • 제50권3호
    • /
    • pp.244-251
    • /
    • 2014
  • This paper describes a prototype mechanical white noise generator has a source level of more than 170.0 dB (re $1{\mu}Pa$ at 1 m) at the frequency range of 10 Hz to 100 kHz. The results of performance evaluation of the generator are as follows. The average source level of the generator measured by a step of $15^{\circ}$ in horizontal (0 to $360^{\circ}$, 25 points) was 185.2 (SD (standard deviation): 2.3) dB (re $1{\mu}Pa$ at 1 m). The maximum and minimum source levels were appeared at the frequency range of 2.5 to 5.0 kHz and around 100 kHz, respectively. The average source levels at $0^{\circ}$, $90^{\circ}$, $180^{\circ}$ and $270^{\circ}$ were 162.9 (SD: 10.6), 168.4 (SD: 10.0), 162.1 (SD: 9.1) and 166.5 (SD: 11.1) dB (re $1{\mu}Pa$ at 1 m). The average source level measured by a step of $30^{\circ}$ in vertical was 184.9 (SD: 2.2) dB (re $1{\mu}Pa$ at 1 m). The relative maximum variation width of the source levels in horizontal and in vertical measurement were less than 7.0 dB and 1.0 dB, respectively.