• Title/Summary/Keyword: Relative Displacement

Search Result 581, Processing Time 0.028 seconds

A Relative Study on the Displacement of Earth Retaining Wall by 2 and 3 Dimentional Analysis (2차원 및 3차원 해석에 의한 토류벽의 변위에 관한 비교 연구)

  • Park, Chun-Sik;Park, Hae-Chan;Kim, Jong-Hwan;Park, Young-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.801-810
    • /
    • 2010
  • Until now, design of Earth Retaining is practiced by 2nd dimensional analysis for convenience of analysis and time saving. However, the construction field is 3rd dimension, in this study, practised the 3rd dimensional analysis which can reflect the field condition more exactly the scope of earth retaining wall, and researched about the effective and economical way of design, compared and reviewed with the results, by practising both the 2nd and 3rd dimensional analysis. existing 2nd dimension. the depth of excavation, depth of embedded and soil condition. As result, under the whole conditions, more displacement came to appear to the value as result of 3rd dimensional analysis more than the result of 2nd dimensional analysis. Accordingly, the displacement by the 2nd dimension analysis is underestimated. Moreover, results of 2nd and 3rd dimensional analysis, there is no difference at displacement, when the depth of embedded is 0.5H, 1.0H and 1.5H, but Displacement of 1.5H is smaller than 0.5H, 1.0H. That is, the bigger the depth of embedded becomes, the displacement of Earth Retaining Wall appeared smaller. The displacement of earth retaining wall according to depth of excavation appeared bigger, when the depth of excavation is increased. In the meantime, when the soil condition is different, in the 2nd dimensional analysis, the displacement appeared biggest, in case of the clay layer, but in the 3rd dimensional analysis, in the beginning of excavating, the displacement of earth retaining wall appeared bigger in case of clay layer, but as excavating is in progress, the displacement of both compound soil layer and sand layer appeared big.

  • PDF

Evaluation of Shear Behavior on Sands According to Confinement Condition in Direct Shear Test (직접전단실험 시 구속조건에 따른 모래의 전단거동 평가)

  • Byun, Yonghoon;Kim, Youngho;Song, Myungjun;Lee, Jongsub
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.1
    • /
    • pp.5-13
    • /
    • 2013
  • Soils around a pile are highly constrained when the vertical load is applied to the pile. However, the conventional direct shear test cannot evaluate the shear strength of the soils under the normal confinement condition. The goal of this study is to evaluate the shear behaviors according to the normal displacement confinement condition including free normal displacement (FND) and constrained normal displacement (CND) during direct shearing. Jumunjin sands were prepared at the different relative densities and loaded at the different normal stresses. The specimens were sheared according to the normal confinement conditions. Experimental results show that shear strengths obtained by the CND tests are higher than those obtained by the FND tests. In addition, for the constrained normal displacement condition, the increment of shear strength increases with the increase of relative density, while the increment of shear strength decreases with the initial normal stress. This study suggests that the effect of confinement condition on the shear strength should be considered when the stability of constrained soils is analyzed.

[Retracted]Analysis of Slope Safety by Tension Wire Data ([논문철회]지표변위계를 활용한 비탈면 안정성 예측)

  • Lee, Seokyoung;Jang, Seoyong;Kim, Taesoo;Han, Heuisoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.4
    • /
    • pp.5-12
    • /
    • 2015
  • Civil engineers have taken the numerous slope monitoring data for an engineering project subjected to hazard potential of slide. However, the topics on how to deal with and draw out proper information from the data related to the slope behavior have not been widely discussed. Recently, several researchers had installed the real-time monitoring system to cope with slope failure; however they are mainly focused on the hardware system installation. Therefore, this study tries to show how the measured data could be grouped and connected each other. The basic idea of analyzing method studied in this paper came from the clustering, which is the part of data mining analysis. Therefore, at the base of classification of time series data, the authors suggest three mathematical data analyzing methods; Average Index of different displacement ($AD_{i,j}$), Difference of average relative displacement ($\overline{RD}_{i,j}$) and Coordinate system of average and relative displacement ($\overline{RD}$, AD). These analyzing methods are based on the statistical method and failure mechanism of slope. Therefore they showed clustering relationships of the similar parts of the slope which makes the same sliding mechanism.

Preparation of Ni(OH)2 Hollow Spheres by Solvent Displacement Crystallization Using Micro-Injection Device (마이크로 주입장치를 이용한 용매치환결정화에 의한 중공상 수산화니켈 분말의 제조)

  • Kim, Seiki;Park, Kyungsoo;Jung, Kwang-Il
    • Journal of Powder Materials
    • /
    • v.23 no.4
    • /
    • pp.311-316
    • /
    • 2016
  • $Ni(OH)_2$ hollow spheres have been prepared by solvent displacement crystallization using a micro-injection device, and the effect of process parameters such as concentration and the relative ratio of the injection speed of the precursor solution, which is an aqueous solution of $NiSO_4{\cdot}6H_2O$, to isopropyl alcohol of displacement solvent have been investigated. The crystal phases after NaOH treatment are in the ${\beta}-phase$ for all process parameters. A higher concentration of $NiSO_4{\cdot}6H_2O$ aqueous solution is injected by a micro-injection device and bigger $Ni(OH)_2$ hollow spheres with a narrower particle size distribution are formed. The crystallinity and hardness of the as-obtained powder are so poor that hydrothermal treatment of the as-obtained $Ni(OH)_2$ at $120^{\circ}C$ for 24 h in distilled water is performed in order to greatly improve the crystallinity. It is thought that a relative ratio of the injection speed of $NiSO_4{\cdot}6H_2O$ to that of isopropyl alcohol of at least more than 1 is preferable to synthesize Ni(OH)2 hollow spheres. It is confirmed that this solution-based process is very effective in synthesizing ceramic hollow spheres by simple adjustment of the process parameters such as the concentration and the injection speed.

Vibration response of saturated sand - foundation system

  • Fattah, Mohammed Y.;Al-Mosawi, Mosa J.;Al-Ameri, Abbas F.I.
    • Earthquakes and Structures
    • /
    • v.11 no.1
    • /
    • pp.83-107
    • /
    • 2016
  • In this study, the response and behavior of machine foundations resting on dry and saturated sand was investigated experimentally. A physical model was manufactured to simulate steady state harmonic load applied on a footing resting on sandy soil at different operating frequencies. Total of (84) physical models were performed. The parameters that were taken into consideration include loading frequency, size of footing and different soil conditions. The footing parameters are related to the size of the rectangular footing and depth of embedment. Two sizes of rectangular steel model footing were used. The footings were tested by changing all parameters at the surface and at 50 mm depth below model surface. Meanwhile, the investigated parameters of the soil condition include dry and saturated sand for two relative densities; 30 % and 80 %. The dynamic loading was applied at different operating frequencies. The response of the footing was elaborated by measuring the amplitude of displacement using the vibration meter. The response of the soil to dynamic loading includes measuring the stresses inside soil media by using piezoelectric sensors. It was concluded that the final settlement (St) of the foundation increases with increasing the amplitude of dynamic force, operating frequency and degree of saturation. Meanwhile, it decreases with increasing the relative density of sand, modulus of elasticity and embedding inside soils. The maximum displacement amplitude exhibits its maximum value at the resonance frequency, which is found to be about 33.34 to 41.67 Hz. In general, embedment of footing in sandy soils leads to a beneficial reduction in dynamic response (displacement and excess pore water pressure) for all soil types in different percentages accompanied by an increase in soil strength.

Three-dimensional simplified slope stability analysis by hybrid-type penalty method

  • Yamaguchi, Kiyomichi;Takeuchi, Norio;Hamasaki, Eisaku
    • Geomechanics and Engineering
    • /
    • v.15 no.4
    • /
    • pp.947-955
    • /
    • 2018
  • In this study, we propose a three-dimensional simplified slope stability analysis using a hybrid-type penalty method (HPM). In this method, a solid element obtained by the HPM is applied to a column that divides the slope into a lattice. Therefore, it can obtain a safety factor in the same way as simplified methods on the slip surface. Furthermore, it can obtain results (displacement and strain) that cannot be obtained by conventional limit equilibrium methods such as the Hovland method. The continuity condition of displacement between adjacent columns and between elements for each depth is considered to incorporate a penalty function and the relative displacement. For a slip surface between the bottom surface and the boundary condition to express the slip of slope, we introduce a penalty function based on the Mohr-Coulomb failure criterion. To compute the state of the slip surface, an r-min method is used in the load incremental method. Using the result of the simple three-dimensional slope stability analysis, we obtain a safety factor that is the same as the conventional method. Furthermore, the movement of the slope was calculated quantitatively and qualitatively because the displacement and strain of each element are obtained.

Difficulty in Closing Mouth in Patient with Disc Displacement: A Case Report

  • Mun, Yo-Sun;Lim, Hyun-Dea;Lee, You-Mee;Kang, Jin-Kyu;Shim, YoungJoo
    • Journal of Oral Medicine and Pain
    • /
    • v.42 no.1
    • /
    • pp.16-19
    • /
    • 2017
  • Clinicians are familiar with limitation of opening mouth caused by temporomandibular disorders. Sometimes, patients also complain of difficulty in closing mouth. Difficulty in closing mouth can be caused by anterior, posterior disc displacement, and subluxation of temporomandibular joint (TMJ). In this report, we presented a patient who had a difficulty in both opening and closing mouth. The patient complained of TMJ noises and intermittent limitation of opening mouth, and inability to get teeth back into maximal intercuspal position. Magnetic resonance images revealed that the left TMJ had an anterior disc displacement with relative posterior disc displacement. We reviewed the possible causes, signs and symptoms, and treatment for difficulty in closing mouth with related literatures.

A Study of a Nonlinear Viscoelastic Model for Elastomeric Bushing in Radial Mode

  • Lee, Seong-Beom;Park, Jong-Keun;Min, Je-Hong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.2
    • /
    • pp.16-21
    • /
    • 2004
  • An elastomeric bushing is a device used in automotive suspension systems to reduce the load transmitted from the wheel to the frame of the vehicle. The relation between the load applied to the shaft or sleeve and the relative displacement of elastomeric bushing is nonlinear and exhibits features of viscoelasticity. A load-displacement relation for elastomeric bushing is important fur dynamic numerical simulations. A boundary value problem fur the bushing response leads to the load-displacement relation, which requires complex calculations. Therefore, by modifying the constitutive equation for a nonlinear viscoelastic incompressible material developed by Lianis, the data for the elastomeric bushing material was obtained and this data was used to derive the new load-displacement relation for radial response of the bushing. After the load relaxation function for the bushing was obtained from the step displacement control test, Pipkin-Rogers model was developed. Solutions were allowed for comparison between the results of the modified Lianis model and those of the proposed model. It was shown that the proposed Pipkin-Rogers model was in very good agreement with the modified Lianis model.

Estimation of Bearing Capacity of Non-Displacement Piles in Sand Considering Pile Shape (모래지반에서 말뚝형태를 고려한 비배토말뚝의 지지력 산정)

  • Paik, Kyu-Ho;Lee, Jun-Hwan;Kim, Dae-Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.5
    • /
    • pp.101-110
    • /
    • 2007
  • In order to investigate the effect of the pile shape on the bearing capacity of non-displacement piles, a series of model pile load tests were performed using a calibration chamber and three model piles with different shape. Results of the model tests showed that the bearing capacity of tapered piles was affected by its taper angle as well as the stress states and relative density of soil. Based on the results of model pile load tests, a new design equation for estimation of the bearing capacity of non-displacement piles was proposed, and it takes into account the effect of the taper angles on the bearing capacity of non-displacement piles.

Settlement of and load distribution in a granular piled raft

  • Madhav, Madhira R.;Sharma, J.K.;Sivakumar, V.
    • Geomechanics and Engineering
    • /
    • v.1 no.1
    • /
    • pp.97-112
    • /
    • 2009
  • The interactions between a granular pile and raft placed on top are investigated using the continuum approach. The compatibility of vertical and radial displacements along the pile - soil interface and of the vertical displacements along the raft - top of ground interfaces are satisfied. Results show that consideration of radial displacement compatibility does not influence the settlement response of or sharing of the applied load between the granular pile and the raft. The percentage load carried by the granular pile (GP) increases with the increase of its stiffness and decreases with the increase of the relative size of raft. The normal stresses at the raft - soil interface decrease with the increase of stiffness of GP and/or relative length of GP. The influences of GP stiffness and relative length of GP are found to be more for relatively large size of raft. The percentage of load transferred to the base of GP increases with the increase of relative size of raft.