시맨틱 웹의 확산을 위해 관계형 데이터베이스에 저장된 데이터를 온톨로지로 변환하는 연구가 활발히 진행 중이다. 관계형 데이터베이스에 저장된 데이터를 온톨로지로 변환하기 위한 연구들은 관계형 데이터베이스의 구성 요소와 RDF 구성 요소를 매핑하는 방식인 RDB to RDF 매핑 모델을 주로 사용한다. 하지만 지금까지 제안된 매핑 모델들은 그 표현방식이 서로 다르며, 이는 사용자의 접근성과 재사용성을 떨어트린다. 이로 인해 표준화된 매핑 언어의 필요성이 대두되었으며, W3C에서는 RDB to RDF 모델의 표준 매핑 언어로서 R2RML을 제안하였다. R2RML은 관계형 데이터베이스 스키마 정보만을 RDF로 변환하는 특징을 가진다. 이와 같은 이유로 관계형 데이터베이스의 테이블 명, 컬럼 명 사이의 관계정보에 대한 온톨로지를 추가할 수 없다. 이 논문에서는 이러한 문제를 해결하기 위해 관계형 데이터베이스 구성 요소의 의미 관계를 고려한 RDB to RDF 매핑 시스템을 제안한다. 제안 시스템은 R2RML에서 정의한 관계형 데이터베이스의 스키마 정보에 RDFS 속성 정보를 확장하여 매핑 정보를 생성한다. 이러한 매핑 정보는 관계형 데이터베이스에 저장된 데이터를 RDFS 속성 정보가 포함된 RDF로 변환시킨다. 이 논문에서는 제안 시스템을 자바 기반의 프로토타입으로 구현하며, 비교 평가를 위해 관계형 데이터베이스에 저장된 데이터를 RDF로 변환하는 실험을 수행하고 결과를 D2RQ, RDBToOnto, Morph와 비교한다. 제안 시스템은 다른 연구들에 비해 변환한 온톨로지가 풍부한 의미관계를 표현하며, 데이터 변환 시간에서 가장 우수한 성능을 보인다.
In this research, we propose the mechanism to develop self-evolving expert systems (SEES) based on data mining (DM), fuzzy neural networks (FNN), and relational database (RDB)-driven forward/backward inference engine. Most researchers had tried to develop a text-oriented knowledge base (KB) and inference engine (IE). However, this approach had some limitations such as 1) automatic rule extraction, 2) manipulation of ambiguousness in knowledge, 3) expandability of knowledge base, and 4) speed of inference. To overcome these limitations, knowledge engineers had tried to develop an automatic knowledge extraction mechanism. As a result, the adaptability of the expert systems was improved. Nonetheless, they didn't suggest a hybrid and generalized solution to develop self-evolving expert systems. To this purpose, we propose an automatic knowledge acquisition and composite inference mechanism based on DM, FNN, and RDB-driven inference engine. Our proposed mechanism has five advantages. First, it can extract and reduce the specific domain knowledge from incomplete database by using data mining technology. Second, our proposed mechanism can manipulate the ambiguousness in knowledge by using fuzzy membership functions. Third, it can construct the relational knowledge base and expand the knowledge base unlimitedly with RDBMS (relational database management systems) module. Fourth, our proposed hybrid data mining mechanism can reflect both association rule-based logical inference and complicate fuzzy relationships. Fifth, RDB-driven forward and backward inference time is shorter than the traditional text-oriented inference time.
Traditional keyword-based searching methods suffer from low accuracy and high complexity due to the rapid growth in the amount of information. Accordingly, many researchers attempt to implement a so-called semantic search which is based on the semantics of the user's query. Semantic information can be described using a semantic modeling language, such as Topic Map. In this paper, we propose a new method to map a topic map to a traditional Relational Database (RDB) without any information loss. Although there have been a few attempts to map topic maps to RDB, they have paid scant attention to handling multi-role topics. In this paper, we propose a new storage structure to map multi-role topics to traditional RDB. The proposed structure consists of a mapping table, role tables, and content tables. Additionally, we devise a query translator to convert a user's query to one appropriate to the proposed structure.
In this research, we proposed the mechanism to develop self evolving expert systems (SEES) based on data mining (DM), fuzzy neural networks (FNN), and relational database (RDB)-driven forward/backward inference engine. Most former researchers tried to develop a text-oriented knowledge base (KB) and inference engine (IE). However, thy have some limitations such as 1) automatic rule extraction, 2) manipulation of ambiguousness in knowledge, 3) expandability of knowledge base, and 4) speed of inference. To overcome these limitations, many of researchers had tried to develop an automatic knowledge extraction and refining mechanisms. As a result, the adaptability of the expert systems was improved. Nonetheless, they didn't suggest a hybrid and generalized solution to develop self-evolving expert systems. To this purpose, in this study, we propose an automatic knowledge acquisition and composite inference mechanism based on DM, FNN, and RDB-driven inference. Our proposed mechanism has five advantages empirically. First, it could extract and reduce the specific domain knowledge from incomplete database by using data mining algorithm. Second, our proposed mechanism could manipulate the ambiguousness in knowledge by using fuzzy membership functions. Third, it could construct the relational knowledge base and expand the knowledge base unlimitedly with RDBMS (relational database management systems). Fourth, our proposed hybrid data mining mechanism can reflect both association rule-based logical inference and complicate fuzzy logic. Fifth, RDB-driven forward and backward inference is faster than the traditional text-oriented inference.
XML (extensible Markup Language) is a flexible way to create common information formats and share both the format and the data on the World Wide Web, intranets, and elsewhere. A document type definition (DTD) is a specific definition of the rules of the Standard Generalized Markup Language. A relational database management system (RDBMS) is a program that lets you create, update, and administer a relational database. An RDBMS takes Structured Query Language (SQL) statements entered by a user or contained in an application program and creates, updates, or provides access to the database. This paper has been studied a method of mappings from XML DTD to RDB schemas based on object model.
최근 전국 각 지역 AMI(Advanced Metering Infrastructure) 원격검침 시스템의 보급사업이 활성화되고 있으며, 전력수요 관리를 위한 양방향 통신 및 보안 요금제 기능 등 다양한 계량 기능을 제공하고 있다. 현재 AMI 시스템은 새로운 내부 IoT 장비 및 네트워크 규모의 증가로 인해 기존 RDB(Relational Database) 기반 장애 분석이 어렵다. 본 연구는 기존 RDB 데이터를 활용하는 새로운 GDB(Graph Database)기반 장애 분석 방법을 제안한다. 내부 임계치와 상태 값 등 누적된 데이터를 통해 새로운 장애 패턴의 상관관계를 분석한다. GDB 기반 시뮬레이션 결과 RDB에서 분석이 어려웠던 새로운 장애 패턴을 예측할 수 있음을 확인하였다.
대부분의 상용 데이터베이스 관리시스템은 관게형 데이터베이스 (relational database) 기술에 기반하고 있다. 그러나, 객체지향언어인 EXPRESS로 정의된 IFC(Industry Foundation Classes)를 일반적으로 많이 사용되는 관계형 데이터베이스로 매핑하려면 서로 구조가 달라 미핑과정이 매우 복잡해진다. 한편 IFC를 객체기반 데이터베이스(object-oriented database)나 객채관계형 데이터베이스(object-oriented relational database)와 같은 객체기반의 데이터베이스로 매핑하게 되면 그 과정이 비교적 단순해지고, 많은 장점을 가질 수 있다. 본 연구에서는 장기적으로 IFC와 객체기술에 기반한 통합정보교환기술을 실용화하기 위하여 먼저 관계형, 객체지향형 데이터베이스의 개념에 대해 살펴보고, IFC를 객체관계형 데이터베이스로의 매핑방법에 대하여 알아본다.
유비쿼터스 컴퓨팅 환경으로 발전하면서 문자열 위주의 획일적 형태에서 음성, 이미지 등 다양한 형태의 데이터들을 처리하게 되었으며, 또한 빠르고 정확하게 처리되기를 요구하고 있다. 현재 데이터 처리 중심부에 있는 Database는 대부분이 Relation DB 위주로 되어 있어 Datafile 에 데이터를 저장하고 있어 대용량의 이미지 데이터 처리에 적합하지가 않다. 본 논문에서는 이러한 단점을 보강하기 위해 Relation DB 하에서 대용량의 이미지 데이터 처리를 가능하게 하는 기법을 제시한다. 이렇게 함으로써 이미지 데이터를 Upload, Download 시 따른 응답 속도를 보장 할 수 있도록 LRU 알고리즘 기반으로 제안을 하였다. 본 논문에서 제안된 기법은 시뮬레이션을 통해 (1)기존 RDB(Relational Database)의 BLOB(Binary Large Object)필드를 이용한 이미지 데이터 처리 방식, (2)별도의 저장 공간에 이미지 데이터를 입/출하는 방식, (3)별도의 저장 공간에 이미지 데이터를 입/출력할 때 LRU(least Recently Used)알고리즘을 이용하는 방식에 대하여 성능 평가를 하였다. 그 결과 (3)별도의 저장 공간에 LRU(least Recently Used)알고리즘을 이용하여 입/출력하는 방식이 (1)기존의 RDB(Relational Database)형태에 BLOB(binary large object)필드를 이용한 것 보다 성능이 높음을 확인하였다.
빅데이터 기술은 데이터 처리 속도가 빠르다는 면에서 주목을 받고 있다. 그리고 관계형 데이터베이스(Relational Database: RDB)에 저장되어있는 대용량 정형 데이터를 더 빠르게 처리하기 위해서 빅데이터 기술을 활용하는 연구도 진행되고 있다. 다양한 분산 처리 도구들을 사용하여 분석 성능을 측정하는 연구는 많지만 분석하기 전 단계인 정형 데이터 적재의 성능에 관한 연구는 미미하다. 때문에 본 연구에서는 RDB 안에 저장되어있는 정형 데이터를 아파치 스쿱(Apache Sqoop)을 사용하여 분산 처리 플랫폼 하둡(Hadoop)으로 적재하는 성능을 측정하였다. 그리고 적재에 영향을 미치는 요인을 분석하기 위해 여러 가지 영향 요소를 변경해가면서 반복적으로 실험을 수행하였고 RDB 기반으로 구성된 서버 간의 적재 성능과 비교하였다. 실험 환경에서 아파치 스쿱의 적재 속도가 낮았지만 실제 운영하고 있는 대규모 하둡 클러스터 환경에서는 더 많은 하드웨어 자원이 확보되기 때문에 훨씬 더 좋은 성능을 기대할 수 있다. 이는 향후 진행할 적재 성능 개선 및 하둡 환경에서 정형 데이터를 분석하는 전체적인 단계의 성능을 향상시킬 수 있는 방법에 대한 연구의 기반이 될 것으로 예상한다.
XML은 전자 상거래 및 인터넷 기반의 정보시스템에서 데이터 표현과 교환을 위한 표준으로 간주되고 있다. XML이 웹에서 운용되는 모든 데이터가 통합, 저장, 처리될 수 있는 기반을 제공하기 위해서는 데이터베이스 안에 XML문서를 저장한 뒤 다시 구조화된 형태로 데이터를 추출하고 XML문서 형태로 생성할 수 있어 야 한다. 비록 많은 DBMS 업체들이 XML을 지원하기 위해 기존 제품들을 확장하고 있지만 이와는 별도로 XML기반의 B2B전자상거래 시스템을 구축하기 위해서 DBMS종류와 플랫폼에 독립적인 XML미들웨어 개발이 필요하다. 본 논문에서는 개발한 XML2RDB 미들웨어 시스템의 구조와 처리과정에 대한 설계 및 구현 내역을 기술하였다. 구현된 XML2RDB 미들웨어는 DBMS종류에 무관하게 XML DTD로부터 XML문서 저장에 필요한 스키마 구조를 생성하고 데이터베이스 테이블에 저장한 뒤 XMLQL(XML Query Language)를 통해 자유롭게 XML 문서를 재 생성할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.