KIPS Transactions on Software and Data Engineering
/
v.3
no.1
/
pp.19-30
/
2014
For the expansion of the Semantic Web, studies in converting the data stored in the relational database into the ontology are actively in process. Such studies mainly use an RDB to RDF mapping model, the model to map relational database components to RDF components. However, pre-proposed mapping models have got different expression modes and these damage the accessibility and reusability of the users. As a consequence, the necessity of the standardized mapping language was raised and the W3C suggested the R2RML as the standard mapping language for the RDB to RDF model. The R2RML has a characteristic that converts only the relational database schema data to RDF. For the same reasons above, the ontology about the relation data between table name and column name of the relational database cannot be added. In this paper, we propose an RDB to RDF mapping system considering semantic relations of RDB components in order to solve the above issue. The proposed system generates the mapping data by adding the RDFS attribute data into the schema data defined by the R2RML in the relational database. This mapping data converts the data stored in the relational database into RDF which includes the RDFS attribute data. In this paper, we implement the proposed system as a Java-based prototype, perform the experiment which converts the data stored in the relational database into RDF for the comparison evaluation purpose and compare the results against D2RQ, RDBToOnto and Morph. The proposed system expresses semantic relations which has richer converted ontology than any other studies and shows the best performance in data conversion time.
In this research, we propose the mechanism to develop self-evolving expert systems (SEES) based on data mining (DM), fuzzy neural networks (FNN), and relational database (RDB)-driven forward/backward inference engine. Most researchers had tried to develop a text-oriented knowledge base (KB) and inference engine (IE). However, this approach had some limitations such as 1) automatic rule extraction, 2) manipulation of ambiguousness in knowledge, 3) expandability of knowledge base, and 4) speed of inference. To overcome these limitations, knowledge engineers had tried to develop an automatic knowledge extraction mechanism. As a result, the adaptability of the expert systems was improved. Nonetheless, they didn't suggest a hybrid and generalized solution to develop self-evolving expert systems. To this purpose, we propose an automatic knowledge acquisition and composite inference mechanism based on DM, FNN, and RDB-driven inference engine. Our proposed mechanism has five advantages. First, it can extract and reduce the specific domain knowledge from incomplete database by using data mining technology. Second, our proposed mechanism can manipulate the ambiguousness in knowledge by using fuzzy membership functions. Third, it can construct the relational knowledge base and expand the knowledge base unlimitedly with RDBMS (relational database management systems) module. Fourth, our proposed hybrid data mining mechanism can reflect both association rule-based logical inference and complicate fuzzy relationships. Fifth, RDB-driven forward and backward inference time is shorter than the traditional text-oriented inference time.
Traditional keyword-based searching methods suffer from low accuracy and high complexity due to the rapid growth in the amount of information. Accordingly, many researchers attempt to implement a so-called semantic search which is based on the semantics of the user's query. Semantic information can be described using a semantic modeling language, such as Topic Map. In this paper, we propose a new method to map a topic map to a traditional Relational Database (RDB) without any information loss. Although there have been a few attempts to map topic maps to RDB, they have paid scant attention to handling multi-role topics. In this paper, we propose a new storage structure to map multi-role topics to traditional RDB. The proposed structure consists of a mapping table, role tables, and content tables. Additionally, we devise a query translator to convert a user's query to one appropriate to the proposed structure.
In this research, we proposed the mechanism to develop self evolving expert systems (SEES) based on data mining (DM), fuzzy neural networks (FNN), and relational database (RDB)-driven forward/backward inference engine. Most former researchers tried to develop a text-oriented knowledge base (KB) and inference engine (IE). However, thy have some limitations such as 1) automatic rule extraction, 2) manipulation of ambiguousness in knowledge, 3) expandability of knowledge base, and 4) speed of inference. To overcome these limitations, many of researchers had tried to develop an automatic knowledge extraction and refining mechanisms. As a result, the adaptability of the expert systems was improved. Nonetheless, they didn't suggest a hybrid and generalized solution to develop self-evolving expert systems. To this purpose, in this study, we propose an automatic knowledge acquisition and composite inference mechanism based on DM, FNN, and RDB-driven inference. Our proposed mechanism has five advantages empirically. First, it could extract and reduce the specific domain knowledge from incomplete database by using data mining algorithm. Second, our proposed mechanism could manipulate the ambiguousness in knowledge by using fuzzy membership functions. Third, it could construct the relational knowledge base and expand the knowledge base unlimitedly with RDBMS (relational database management systems). Fourth, our proposed hybrid data mining mechanism can reflect both association rule-based logical inference and complicate fuzzy logic. Fifth, RDB-driven forward and backward inference is faster than the traditional text-oriented inference.
XML (extensible Markup Language) is a flexible way to create common information formats and share both the format and the data on the World Wide Web, intranets, and elsewhere. A document type definition (DTD) is a specific definition of the rules of the Standard Generalized Markup Language. A relational database management system (RDBMS) is a program that lets you create, update, and administer a relational database. An RDBMS takes Structured Query Language (SQL) statements entered by a user or contained in an application program and creates, updates, or provides access to the database. This paper has been studied a method of mappings from XML DTD to RDB schemas based on object model.
Recently, the spreading business of AMI (Advanced Metering Infrastructure) remote metering systems in various regions of the country has been activated, and it provides various metering functions such as two-way communication and security plan functions for power demand management. Current AMI system is difficult to analyze based on the existing RDB(Relational Database) due to the increase in the size of new internal IoT devices and networks. This study proposes a new GDB(Graph Database) based failure analysis method that utilizes existing RDB data. It analyzes the correlation of new failure patterns through accumulated data such as internal thresholds and status values. As a result of GDB-based simulation, it was confirmed that RDB can predict to a new obstacle pattern that was difficult to analyze.
Proceedings of the Korean Institute Of Construction Engineering and Management
/
2007.11a
/
pp.301-305
/
2007
Mapping of EXPRESS, which is object-favored language to represent IFC model, to Relational Database is not straightforward. Model size can be much bigger and data can be missed through process. However mapping to the object concept added database, such as Object Oriented Database or Object Relational Database, may be simpler and have lots of advantages. This study investigates previous IFC mapping studies, concept of Relational Database and Object Oriented Database, and mapping methodology to Object Relational Database using object.
Proceedings of the Korea Information Processing Society Conference
/
2006.05a
/
pp.81-84
/
2006
유비쿼터스 컴퓨팅 환경으로 발전하면서 문자열 위주의 획일적 형태에서 음성, 이미지 등 다양한 형태의 데이터들을 처리하게 되었으며, 또한 빠르고 정확하게 처리되기를 요구하고 있다. 현재 데이터 처리 중심부에 있는 Database는 대부분이 Relation DB 위주로 되어 있어 Datafile 에 데이터를 저장하고 있어 대용량의 이미지 데이터 처리에 적합하지가 않다. 본 논문에서는 이러한 단점을 보강하기 위해 Relation DB 하에서 대용량의 이미지 데이터 처리를 가능하게 하는 기법을 제시한다. 이렇게 함으로써 이미지 데이터를 Upload, Download 시 따른 응답 속도를 보장 할 수 있도록 LRU 알고리즘 기반으로 제안을 하였다. 본 논문에서 제안된 기법은 시뮬레이션을 통해 (1)기존 RDB(Relational Database)의 BLOB(Binary Large Object)필드를 이용한 이미지 데이터 처리 방식, (2)별도의 저장 공간에 이미지 데이터를 입/출하는 방식, (3)별도의 저장 공간에 이미지 데이터를 입/출력할 때 LRU(least Recently Used)알고리즘을 이용하는 방식에 대하여 성능 평가를 하였다. 그 결과 (3)별도의 저장 공간에 LRU(least Recently Used)알고리즘을 이용하여 입/출력하는 방식이 (1)기존의 RDB(Relational Database)형태에 BLOB(binary large object)필드를 이용한 것 보다 성능이 높음을 확인하였다.
KIPS Transactions on Software and Data Engineering
/
v.4
no.2
/
pp.77-82
/
2015
Big Data technology has been attracted much attention in aspect of fast data processing. Research of practicing Big Data technology is also ongoing to process large-scale structured data much faster in Relatioinal Database(RDB). Although there are lots of studies about measuring analyzing performance, studies about structured data loading performance, prior step of analyzing, is very rare. Thus, in this study, structured data in RDB is tested the performance that loads distributed processing platform Hadoop using Apache sqoop. Also in order to analyze the influence factors of data loading, it is tested repeatedly with different options of data loading and compared with data loading performance among RDB based servers. Although data loading performance of Apache Sqoop in test environment was low, but in large-scale Hadoop cluster environment we can expect much better performance because of getting more hardware resources. It is expected to be based on study improving data loading performance and whole steps of performance analyzing structured data in Hadoop Platform.
XML(Extensible Markup Language) is an emerging standard for data representation and exchange in e-commerce and internet-based information. However, to realize this potential, it is necessary to be able to extract structured data from XML documents and store it in a database, as well as to generate XML documents from data extracted from a database. Although many DBMS vendors are scrambling to extend their products to handle XML, there is a need for a lightweight, DBMS and platform-independent XML middleware as well. In this paper we describe such a XML2RDB middleware, that solves the following problems . generating relational schema from XML DTDs for storage of XML documents, importing data from XML documents into relational tables, creating XML documents according to a XMLQL(XML Query Language) from data extracted from a database.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.