• 제목/요약/키워드: Related-Key Differential Attack

검색결과 17건 처리시간 0.023초

Related-Key Differential Attacks on CHESS-64

  • Luo, Wei;Guo, Jiansheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권9호
    • /
    • pp.3266-3285
    • /
    • 2014
  • With limited computing and storage resources, many network applications of encryption algorithms require low power devices and fast computing components. CHESS-64 is designed by employing simple key scheduling and Data-Dependent operations (DDO) as main cryptographic components. Hardware performance for Field Programmable Gate Arrays (FPGA) and for Application Specific Integrated Circuits (ASIC) proves that CHESS-64 is a very flexible and powerful new cipher. In this paper, the security of CHESS-64 block cipher under related-key differential cryptanalysis is studied. Based on the differential properties of DDOs, we construct two types of related-key differential characteristics with one-bit difference in the master key. To recover 74 bits key, two key recovery algorithms are proposed based on the two types of related-key differential characteristics, and the corresponding data complexity is about $2^{42.9}$ chosen-plaintexts, computing complexity is about $2^{42.9}$ CHESS-64 encryptions, storage complexity is about $2^{26.6}$ bits of storage resources. To break the cipher, an exhaustive attack is implemented to recover the rest 54 bits key. These works demonstrate an effective and general way to attack DDO-based ciphers.

연관키 차분 특성을 이용한 32-라운드 GOST 공격 (Related Key Differential Attacks on 32-Round GOST)

  • 이태건;고영대;홍석희;이상진
    • 정보보호학회논문지
    • /
    • 제14권3호
    • /
    • pp.75-84
    • /
    • 2004
  • 이 논문에서는 블록 암호 알고리즘 GOST의 연관키 차분 공격에 대하여 설명한다. COST는 키 스케줄이 단순하여 연관키 차분 특성식이 발생하는데 이를 이용하여, 우선 랜덤 oracle로부터 GOST 블록 암호 알고리즘을 확률 1-2$^{-64}$ 로 써 구별하는 방법에 대하여 언급하고, 그 다음엔 각각 24-라운드와 6-라운드로 이루어진 두 개의 연관키 차분 특성식을 연접하여 30-라운드 차분 특성식을 꾸민 후 31-라운드 GOST의 마지막 라운드 키 32비트를 복구하는 공격방법에 대하여 설명한다. 또한, 전체 32-라운드 GOST의 마지막 32 라운드의 부분키 12 비트를 91.7%의 성공확률로 2$^{35}$ 의 선택평문과 2$^{36}$ 의 암호화 시간을 이용하여 복구할 수 있는 알고리즘에 대해서 서술한다.

Related-key Neural Distinguisher on Block Ciphers SPECK-32/64, HIGHT and GOST

  • Erzhena Tcydenova;Byoungjin Seok;Changhoon Lee
    • Journal of Platform Technology
    • /
    • 제11권1호
    • /
    • pp.72-84
    • /
    • 2023
  • With the rise of the Internet of Things, the security of such lightweight computing environments has become a hot topic. Lightweight block ciphers that can provide efficient performance and security by having a relatively simpler structure and smaller key and block sizes are drawing attention. Due to these characteristics, they can become a target for new attack techniques. One of the new cryptanalytic attacks that have been attracting interest is Neural cryptanalysis, which is a cryptanalytic technique based on neural networks. It showed interesting results with better results than the conventional cryptanalysis method without a great amount of time and cryptographic knowledge. The first work that showed good results was carried out by Aron Gohr in CRYPTO'19, the attack was conducted on the lightweight block cipher SPECK-/32/64 and showed better results than conventional differential cryptanalysis. In this paper, we first apply the Differential Neural Distinguisher proposed by Aron Gohr to the block ciphers HIGHT and GOST to test the applicability of the attack to ciphers with different structures. The performance of the Differential Neural Distinguisher is then analyzed by replacing the neural network attack model with five different models (Multi-Layer Perceptron, AlexNet, ResNext, SE-ResNet, SE-ResNext). We then propose a Related-key Neural Distinguisher and apply it to the SPECK-/32/64, HIGHT, and GOST block ciphers. The proposed Related-key Neural Distinguisher was constructed using the relationship between keys, and this made it possible to distinguish more rounds than the differential distinguisher.

  • PDF

Real Time Related Key Attack on Hummingbird-2

  • Zhang, Kai;Ding, Lin;Li, Junzhi;Guan, Jie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제6권8호
    • /
    • pp.1946-1963
    • /
    • 2012
  • Hummingbird is a lightweight encryption and message authentication primitive published in RISC'09 and WLC'10. In FSE'11, Markku-Juhani O.Saarinen presented a differential divide-and-conquer method which has complexity upper bounded by $2^{64}$ operations and requires processing of few megabytes of chosen messages under two related nonces (IVs). The improved version, Hummingbird-2, was presented in RFIDSec 2011. Based on the idea of differential collision, this paper discovers some weaknesses of the round function WD16. Combining with the simple key loading algorithm, a related-key chosen-IV attack which can recover the full secret key is proposed. Under 15 pairs of related keys, the 128 bit initial key can be recovered, requiring $2^{27}$ chosen IV and the computational complexity is $O(2^{27})$. In average, the attack needs several minutes to recover the full 128-bit secret key on a PC. The experimental result corroborates our attack. The result shows that the Hummingbird-2 cipher can't resist related key attack.

Impossible Differential Cryptanalysis on ESF Algorithm with Simplified MILP Model

  • Wu, Xiaonian;Yan, Jiaxu;Li, Lingchen;Zhang, Runlian;Yuan, Pinghai;Wang, Yujue
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권10호
    • /
    • pp.3815-3833
    • /
    • 2021
  • MILP-based automatic search is the most common method in analyzing the security of cryptographic algorithms. However, this method brings many issues such as low efficiency due to the large size of the model, and the difficulty in finding the contradiction of the impossible differential distinguisher. To analyze the security of ESF algorithm, this paper introduces a simplified MILP-based search model of the differential distinguisher by reducing constrains of XOR and S-box operations, and variables by combining cyclic shift with its adjacent operations. Also, a new method to find contradictions of the impossible differential distinguisher is proposed by introducing temporary variables, which can avoid wrong and miss selection of contradictions. Based on a 9-round impossible differential distinguisher, 15-round attack of ESF can be achieved by extending forward and backward 3-round in single-key setting. Compared with existing results, the exact lower bound of differential active S-boxes in single-key setting for 10-round ESF are improved. Also, 2108 9-round impossible differential distinguishers in single-key setting and 14 12-round impossible differential distinguishers in related-key setting are obtained. Especially, the round of the discovered impossible differential distinguisher in related-key setting is the highest, and compared with the previous results, this attack achieves the highest round number in single-key setting.

블록 암호 SCOS-3의 연관키 차분 공격에 대한 안전성 분석 (Security Analysis of SCOS-3 Block Cipher against a Related-Key Attack)

  • 이창훈
    • 한국항행학회논문지
    • /
    • 제13권6호
    • /
    • pp.977-983
    • /
    • 2009
  • 최근, 하드웨어 환경에서 효율적으로 구현이 가능한 DDP, DDO, COS-기반 블록 암호에 대한 연구가 활발히 진행되고 있다. 그러나 대부분의 DDP, DDO, COS-기반 블록 암호들은 연관키 공격에 취약한 것으로 드러났다. 12-라운드 블록 암호 SCOS-3는 기제안된 DDP, DDO, COS의 취약점을 제거하기 위해 개발된 COS-기반 블록 암호이다. 본 논문에서는 SCOS-3의 11-라운드 축소 버전에 대한 연관키 차분 공격을 제안한다. 본 논문에서 소개하는 공격은 SCOS-3에 대한 첫 번째 공격이며, $2^{58}$개의 연관키 선택 평문을 이용하여 $2^{117.54}$의 11-라운드 SCOS-3 암호화 연산을 수행하여 11-라운드 SCOS-3의 비밀키를 복구한다. 이를 통해 SCOS-3가 여전히 연관키 공격에 취약함을 알 수 있다.

  • PDF

축소 라운드 SHACAL-2의 연관키 공격 (Related-Key Attacks on Reduced Rounds of SHACAL-2)

  • 김종성;김구일;이상진;임종인
    • 정보보호학회논문지
    • /
    • 제15권3호
    • /
    • pp.115-126
    • /
    • 2005
  • SHACAL-2는 해쉬 알고리즘 SHA-2의 압축 함수에 기반을 둔 최대 512 비트 키 크기를 가지는 256 비트 블록 암호이다. 최근에 SHACAL-2는 NESSIE 프로젝트의 256 비트 블록 암호에 선정되었다. 본 논문에서는 연관키를 이용한 두 가지 형태의 연관키 차분-비선형 공격과 연관키 Rectangle 공격에 대한 SHACAL-2의 안전성을 논의한다. 연관키 차분-비선형 공격 기법을 통하여 512 비트 키를 사용하는 35-라운드 SHACAL-2를 분석하고, 연관키 렉탱글 공격 기법을 통하여 512 비트 키를 사용하는 37-라운드 SHACAL-2를 분석한다. 본 논문에서 소개하는 512 비트 키를 가지는 37-라운드 SHACAL-2 연관키 렉탱글 공격은 SHACAL-2 블록 암호에 알려진 분석 결과 중 가장 효과적이다.

블록 암호 SCO-1에 대한 안전성 분석 (Security Analysis on the Full-Round SCO-1)

  • 정기태;이창훈;김종성;홍석희
    • 정보보호학회논문지
    • /
    • 제18권4호
    • /
    • pp.27-35
    • /
    • 2008
  • 본 논문에서는 블록 암호 SCO-1[12]에 대한 연관키 차분 공격을 소개한다. 본 논문에서 소개하는 공격은 SCO-1에 대한 첫 번째 공격이며 $2^{61}$개의 연관키 선택 암호문을 이용하여 $2^{120.59}$의 SCO-1 복호화 연산을 수행하여 SCO-1의 128-비트 비밀키를 복구한다.

CKGS: A Way Of Compressed Key Guessing Space to Reduce Ghost Peaks

  • Li, Di;Li, Lang;Ou, Yu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권3호
    • /
    • pp.1047-1062
    • /
    • 2022
  • Differential power analysis (DPA) is disturbed by ghost peaks. There is a phenomenon that the mean absolute difference (MAD) value of the wrong key is higher than the correct key. We propose a compressed key guessing space (CKGS) scheme to solve this problem and analyze the AES algorithm. The DPA based on this scheme is named CKGS-DPA. Unlike traditional DPA, the CKGS-DPA uses two power leakage points for a combined attack. The first power leakage point is used to determine the key candidate interval, and the second is used for the final attack. First, we study the law of MAD values distribution when the attack point is AddRoundKey and explain why this point is not suitable for DPA. According to this law, we modify the selection function to change the distribution of MAD values. Then a key-related value screening algorithm is proposed to obtain key information. Finally, we construct two key candidate intervals of size 16 and reduce the key guessing space of the SubBytes attack from 256 to 32. Simulation experimental results show that CKGS-DPA reduces the power traces demand by 25% compared with DPA. Experiments performed on the ASCAD dataset show that CKGS-DPA reduces the power traces demand by at least 41% compared with DPA.

Related-key Impossible Boomerang Cryptanalysis on LBlock-s

  • Xie, Min;Zeng, Qiya
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권11호
    • /
    • pp.5717-5730
    • /
    • 2019
  • LBlock-s is the core block cipher of authentication encryption algorithm LAC, which uses the same structure of LBlock and an improved key schedule algorithm with better diffusion property. Using the differential properties of the key schedule algorithm and the cryptanalytic technique which combines impossible boomerang attacks with related-key attacks, a 15-round related-key impossible boomerang distinguisher is constructed for the first time. Based on the distinguisher, an attack on 22-round LBlock-s is proposed by adding 4 rounds on the top and 3 rounds at the bottom. The time complexity is about only 268.76 22-round encryptions and the data complexity is about 258 chosen plaintexts. Compared with published cryptanalysis results on LBlock-s, there has been a sharp decrease in time complexity and an ideal data complexity.