• Title/Summary/Keyword: Related keyword

Search Result 696, Processing Time 0.024 seconds

A Keyword Network Analysis on Health Disparity in Korea: Focusing on News and its application to Physical Education

  • Kim, Woo-Kyung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.3
    • /
    • pp.143-150
    • /
    • 2019
  • This study aimed to analyze the keyword related to Health Disparity in Korea through the method of keyword network analysis and to establish a basic database for suggesting ideas for prospective studies in physical education. To achieve the goal, this study crawled co-occured keyword with 'health' and 'disparity' from news casted in 20 different channels. The duration of the news was 3 months, from September 11th, 2018 to December 11th. The results are as follows. First, among the news during recent 3 months, there were 1,383 keyword related to health disparity and this study selected 173 keyword which had co-occured over 3 times. Second, the inclusiveness of the network was 97.674% and the density was .038. Third, analyzing news related to health disparity, 'mortality' was the most co-occured keyword and 'disparity', 'reinforcement', 'the most', 'health', '6 times', 'Seoul', 'half', 'medicine', and 'local' were shown similarly. And common keyword in 4 centrality were 13 keyword. Lastly, by analyzing eigenvector centrality, significantly different result has shown. 'Disparity' was the most co-occured keyword. Based on this result, this study showed the necessity for reinforcing the public physical education in public education system in Korea. In order to achieve it, the field of physical education must look beyond present elite-focused physical education to public physical activity.

Design and Implementation of Potential Advertisement Keyword Extraction System Using SNS (SNS를 이용한 잠재적 광고 키워드 추출 시스템 설계 및 구현)

  • Seo, Hyun-Gon;Park, Hee-Wan
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.7
    • /
    • pp.17-24
    • /
    • 2018
  • One of the major issues in big data processing is extracting keywords from internet and using them to process the necessary information. Most of the proposed keyword extraction algorithms extract keywords using search function of a large portal site. In addition, these methods extract keywords based on already posted or created documents or fixed contents. In this paper, we propose a KAES(Keyword Advertisement Extraction System) system that helps the potential shopping keyword marketing to extract issue keywords and related keywords based on dynamic instant messages such as various issues, interests, comments posted on SNS. The KAES system makes a list of specific accounts to extract keywords and related keywords that have most frequency in the SNS.

A Methodology for Extracting Shopping-Related Keywords by Analyzing Internet Navigation Patterns (인터넷 검색기록 분석을 통한 쇼핑의도 포함 키워드 자동 추출 기법)

  • Kim, Mingyu;Kim, Namgyu;Jung, Inhwan
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.2
    • /
    • pp.123-136
    • /
    • 2014
  • Recently, online shopping has further developed as the use of the Internet and a variety of smart mobile devices becomes more prevalent. The increase in the scale of such shopping has led to the creation of many Internet shopping malls. Consequently, there is a tendency for increasingly fierce competition among online retailers, and as a result, many Internet shopping malls are making significant attempts to attract online users to their sites. One such attempt is keyword marketing, whereby a retail site pays a fee to expose its link to potential customers when they insert a specific keyword on an Internet portal site. The price related to each keyword is generally estimated by the keyword's frequency of appearance. However, it is widely accepted that the price of keywords cannot be based solely on their frequency because many keywords may appear frequently but have little relationship to shopping. This implies that it is unreasonable for an online shopping mall to spend a great deal on some keywords simply because people frequently use them. Therefore, from the perspective of shopping malls, a specialized process is required to extract meaningful keywords. Further, the demand for automating this extraction process is increasing because of the drive to improve online sales performance. In this study, we propose a methodology that can automatically extract only shopping-related keywords from the entire set of search keywords used on portal sites. We define a shopping-related keyword as a keyword that is used directly before shopping behaviors. In other words, only search keywords that direct the search results page to shopping-related pages are extracted from among the entire set of search keywords. A comparison is then made between the extracted keywords' rankings and the rankings of the entire set of search keywords. Two types of data are used in our study's experiment: web browsing history from July 1, 2012 to June 30, 2013, and site information. The experimental dataset was from a web site ranking site, and the biggest portal site in Korea. The original sample dataset contains 150 million transaction logs. First, portal sites are selected, and search keywords in those sites are extracted. Search keywords can be easily extracted by simple parsing. The extracted keywords are ranked according to their frequency. The experiment uses approximately 3.9 million search results from Korea's largest search portal site. As a result, a total of 344,822 search keywords were extracted. Next, by using web browsing history and site information, the shopping-related keywords were taken from the entire set of search keywords. As a result, we obtained 4,709 shopping-related keywords. For performance evaluation, we compared the hit ratios of all the search keywords with the shopping-related keywords. To achieve this, we extracted 80,298 search keywords from several Internet shopping malls and then chose the top 1,000 keywords as a set of true shopping keywords. We measured precision, recall, and F-scores of the entire amount of keywords and the shopping-related keywords. The F-Score was formulated by calculating the harmonic mean of precision and recall. The precision, recall, and F-score of shopping-related keywords derived by the proposed methodology were revealed to be higher than those of the entire number of keywords. This study proposes a scheme that is able to obtain shopping-related keywords in a relatively simple manner. We could easily extract shopping-related keywords simply by examining transactions whose next visit is a shopping mall. The resultant shopping-related keyword set is expected to be a useful asset for many shopping malls that participate in keyword marketing. Moreover, the proposed methodology can be easily applied to the construction of special area-related keywords as well as shopping-related ones.

Method of Related Document Recommendation with Similarity and Weight of Keyword (키워드의 유사도와 가중치를 적용한 연관 문서 추천 방법)

  • Lim, Myung Jin;Kim, Jae Hyun;Shin, Ju Hyun
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.11
    • /
    • pp.1313-1323
    • /
    • 2019
  • With the development of the Internet and the increase of smart phones, various services considering user convenience are increasing, so that users can check news in real time anytime and anywhere. However, online news is categorized by media and category, and it provides only a few related search terms, making it difficult to find related news related to keywords. In order to solve this problem, we propose a method to recommend related documents more accurately by applying Doc2Vec similarity to the specific keywords of news articles and weighting the title and contents of news articles. We collect news articles from Naver politics category by web crawling in Java environment, preprocess them, extract topics using LDA modeling, and find similarities using Doc2Vec. To supplement Doc2Vec, we apply TF-IDF to obtain TC(Title Contents) weights for the title and contents of news articles. Then we combine Doc2Vec similarity and TC weight to generate TC weight-similarity and evaluate the similarity between words using PMI technique to confirm the keyword association.

A Keyword Query Processing Technique of OWL Data using Semantic Relationships (의미적 관계를 이용한 OWL 데이터의 키워드 질의 처리 기법)

  • Kim, Youn Hee;Kim, Sung Wan
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.1
    • /
    • pp.59-72
    • /
    • 2013
  • In this paper, we propose a keyword query processing technique based on semantic relationships for OWL data. The proposed keyword query processing technique can improve user's search satisfaction by performing two types of associative search. The first associative search uses information inferred by the relationships between classes or properties during keyword query processing. And it supports to search all information resources that are either directly or indirectly related with query keywords by semantic relationships between information resources. The second associative search returns not only information resources related with query keywords but also values of properties of them. We design a storage schema and index structures to support the proposed technique. And we propose evaluation functions to rank retrieved information resources according to three criteria. Finally, we evaluate the validity and accuracy of the proposed technique through experiments. The proposed technique can be utilized in a variety of fields, such as paper retrieval and multimedia retrieval.

Public Key Encryption with Keyword Search for Restricted Testability (검증 능력이 제한된 검색 가능한 공개키 암호시스템)

  • Eom, Ji-Eun;Rhee, Hyun-Sook;Lee, Dong-Hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.21 no.4
    • /
    • pp.3-10
    • /
    • 2011
  • To provide efficient keyword search on encrypted data, a public key encryption with keyword search (PEKS) was proposed by Boneh et al. A sender encrypts an e-mail and keywords with receiver's public key, respectively and uploads them on a server. Then a receiver generates a trapdoor of w with his secret key to search an e-mail related with some keyword w. However, Byun et al. showed that PEKS and some related schemes are not secure against keyword guessing attacks. In this paper, we propose a public key encryption with keyword search for restricted testability (PEKS-RT) scheme and show that our scheme is secure against keyword guessing attacks.

Research Trend on AI Security Using Keyword Frequency and Centrality Analysis : Focusing on the United States, United Kingdom, South Korea (키워드 빈도와 중심성 분석을 이용한 인공지능 보안 연구 동향 : 미국·영국·한국을 중심으로)

  • Lee Taekkyeun
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.19 no.4
    • /
    • pp.13-27
    • /
    • 2023
  • In this study, we tried to identify research trends on artificial intelligence security focusing on the United States, United Kingdom, and South Korea. In Elsevier's Scopus We collected 4,983 papers related to artificial intelligence security published from 2018 to 2022 and by using the abstracts of the collected papers, Keyword frequency and centrality analysis were conducted. By calculating keyword frequency, keywords with high frequency of appearance were identified and through the centrality analysis, central research keywords were identified by country. Through the analysis results, research related to artificial intelligence, machine learning, Internet of Things, and cybersecurity in each country was conducted as the most central and highly mediating research. The implication for Korea is that research related to cybersecurity, privacy, and anomaly detection has lower centralities compared to the United States and research related to big data has lower centralities compared to United Kingdom. Therefore, various researches that intensively apply artificial intelligence technology to these fields are needed.

Analysis of Trends in Science and Technology using Keyword Network Analysis (키워드 네트워크 분석을 활용한 과학기술동향 분석)

  • Park, Ju Seop;Kim, Na Rang;Han, Eun Jung
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.23 no.2
    • /
    • pp.63-73
    • /
    • 2018
  • Academia and research institutes mainly use qualitative methods that rely on expert judgments to understand and predict research trends and science and technology trends. Since such a technique has the disadvantage of requiring much time and money, in this study, science and technology trends were predicted using keyword network analysis. To that end, 13,618 AI (Artificial Intelligence) patent abstracts were analyzed using keyword network analysis in three separate lots based on the period of the submission of each abstract: analysis period 1 (January 1, 2002 - December 31, 2006), analysis period 2 (January 1, 2007 - December 31, 2011), and analysis period 3 (January 1, 2012 - December 31, 2016). According to the results of frequency analyses, keywords related to methods in the field of AI application appeared more frequently as time passed from analysis period 1 to analysis period 3. In keyword network analyses, the connectivity between keywords related to methods in the field of AI application and other keywords increased over time. In addition, when the connected keywords that showed increasing or decreasing trends during the entire analysis period were analyzed, it could be seen that the connectivity to methods and management in the field of AI application was strengthened while the connectivity to the field of basic science and technology was weakened. According to analysis of keyword connection centrality, the centrality value of the field of AI application increased over time. According to analysis of keyword mediation centrality during analysis period 3, keywords related to methodologies in the field of AI application showed the highest mediation value. Therefore, it is expected that methods in the field of AI application will play the role of powerful intermediaries in AI hereafter. The technique presented in this paper can be employed in the excavation of tasks related to regional innovation or in fields such as social issue visualization.

An Analysis of Domestic Research Trend on Research Data Using Keyword Network Analysis (키워드 네트워크 분석을 이용한 연구데이터 관련 국내 연구 동향 분석)

  • Sangwoo Han
    • Journal of Korean Library and Information Science Society
    • /
    • v.54 no.4
    • /
    • pp.393-414
    • /
    • 2023
  • The goal of this study is to investigate domestic research trend on research data study. To achieve this goal, articles related research data topic were collected from RISS. After data cleansing, 134 author keywords were extracted from a total of 58 articles and keyword network analysis was performed. As a result, first, the number of studies related to research data in Korea is still only 58, so it was found that many related studies need to be conducted in the future. Second, most research fields related to research data were focused on library and information science among complex studies. Third, as a result of frequency analysis of author keywords related to research data, 'research data management', 'research data sharing', 'data repository', and 'open science' were analyzed as major frequent keywords, so research data-related research focuses on the above keywords. The keyword network analysis results also showed that high-frequency keywords occupy a central position in degree centrality and betweenness centrality and are located as core keywords in related studies. Through the results of this study, we were able to identify trends related to recent research data and identify areas that require intensive research in the future.

A Social Network Analysis of Research Key Words Related Smoke Cessation in South Korea (연결망 분석을 활용한 우리나라 금연연구 동향분석)

  • An, Eun-Seong
    • Health Policy and Management
    • /
    • v.29 no.2
    • /
    • pp.138-145
    • /
    • 2019
  • Background: The purpose of this study is supposed to figure out the keyword network from 2009 to 2018 with social network analysis and provide the research data that can help the Korea government's policy making on smoking cessation. Methods: First, frequency analysis on the keyword was performed. After, in this study, I applied three classic centrality measures (degree centrality, betweenness centrality, and eigenvector centrality) with R 3.5.1. Moreover, I visualized the results as the word cloud and keyword network. Results: As a result of network analysis, 'smoking' and 'smoking cessation' were key words with high frequency, high degree centrality, and betweenness centrality. As a result of looking at trends in keyword, many study had been done on the keyword 'secondhand smoke' and 'adolescent' from 2009 to 2013, and 'cigarette graphic warning' and 'electronic cigarette' from 2014 to 2018. Conclusion: This study contributes to understand trends on smoking cessation study and seek further study with the keyword network analysis.