• 제목/요약/키워드: Related keyword

검색결과 696건 처리시간 0.029초

A Keyword Network Analysis on Health Disparity in Korea: Focusing on News and its application to Physical Education

  • Kim, Woo-Kyung
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권3호
    • /
    • pp.143-150
    • /
    • 2019
  • This study aimed to analyze the keyword related to Health Disparity in Korea through the method of keyword network analysis and to establish a basic database for suggesting ideas for prospective studies in physical education. To achieve the goal, this study crawled co-occured keyword with 'health' and 'disparity' from news casted in 20 different channels. The duration of the news was 3 months, from September 11th, 2018 to December 11th. The results are as follows. First, among the news during recent 3 months, there were 1,383 keyword related to health disparity and this study selected 173 keyword which had co-occured over 3 times. Second, the inclusiveness of the network was 97.674% and the density was .038. Third, analyzing news related to health disparity, 'mortality' was the most co-occured keyword and 'disparity', 'reinforcement', 'the most', 'health', '6 times', 'Seoul', 'half', 'medicine', and 'local' were shown similarly. And common keyword in 4 centrality were 13 keyword. Lastly, by analyzing eigenvector centrality, significantly different result has shown. 'Disparity' was the most co-occured keyword. Based on this result, this study showed the necessity for reinforcing the public physical education in public education system in Korea. In order to achieve it, the field of physical education must look beyond present elite-focused physical education to public physical activity.

SNS를 이용한 잠재적 광고 키워드 추출 시스템 설계 및 구현 (Design and Implementation of Potential Advertisement Keyword Extraction System Using SNS)

  • 서현곤;박희완
    • 한국융합학회논문지
    • /
    • 제9권7호
    • /
    • pp.17-24
    • /
    • 2018
  • 빅데이터 처리 분야에서 중요한 이슈 중 하나는 인터넷의 주요 키워드를 추출하고 이것을 이용하여 필요한 정보를 가공하는 것이다. 현재까지 제안된 대부분의 키워드 추출 방법들은 대형 포털 사이트의 검색기능을 기반으로 이미 게시된 글이나 작성된 문서 또는 고정된 내용에 기반하고 있다. 본 논문에서는 SNS에 게시되는 다양한 이슈, 대화, 관심 분야, 의견 등 동적인 메시지를 기반으로 이슈 키워드 및 연관 키워드를 추출하여 잠재적 쇼핑 연관 키워드 광고 마케팅에 도움을 주는 시스템(KAES: Keyword Advertisement Extraction System based on SNS)을 개발한다. KAES 시스템은 특정 계정 리스트를 작성하여 SNS에서 빈도수가 가장 많은 핵심 키워드 및 연관 키워드를 추출한다.

인터넷 검색기록 분석을 통한 쇼핑의도 포함 키워드 자동 추출 기법 (A Methodology for Extracting Shopping-Related Keywords by Analyzing Internet Navigation Patterns)

  • 김민규;김남규;정인환
    • 지능정보연구
    • /
    • 제20권2호
    • /
    • pp.123-136
    • /
    • 2014
  • 최근 온라인 및 다양한 스마트 기기의 사용이 확산됨에 따라 온라인을 통한 쇼핑구매가 더욱 활성화 되었다. 때문에 인터넷 쇼핑몰들은 쇼핑에 관심이 있는 잠재 고객들에게 한 번이라도 더 자사의 링크를 노출시키기 위해 키워드에 비용을 지불할 용의가 있으며, 이러한 추세는 검색 광고 시장의 광고비를 증가시키는 원인을 제공하였다. 이 때 키워드의 가치는 대체로 검색어의 빈도수에 기반을 두어 산정된다. 하지만 포털 사이트에서 검색어로 자주 입력되는 모든 단어가 쇼핑과 관련이 있는 것은 아니며, 이들 키워드 중에는 빈도수는 높지만 쇼핑몰 관점에서는 별로 수익과 관련이 없는 키워드도 다수 존재한다. 그렇기 때문에 특정 키워드가 사용자들에게 많이 노출된다고 해서, 이를 통해 구매가 이루어질 것을 기대하여 해당 키워드에 많은 광고비를 지급하는 것은 매우 비효율적인 방식이다. 따라서 포털 사이트의 빈발 검색어 중 쇼핑몰 관점에서 중요한 키워드를 추출하는 작업이 별도로 요구되며, 이 과정을 빠르고 효과적으로 수행하기 위한 자동화 방법론에 대한 수요가 증가하고 있다. 본 연구에서는 이러한 수요에 부응하기 위해 포털 사이트에 입력된 키워드 중 쇼핑의도를 포함하고 있을 가능성이 높을 것으로 추정되는 키워드만을 자동으로 추출하는 방안을 제시하고, 구체적으로는 전체 검색어 중 검색결과 페이지에서 쇼핑과 관련 된 페이지로 이동한 검색어만을 추출하여 순위를 집계하고, 이 순위를 전체 검색 키워드의 순위와 비교하였다. 국내 최대의 검색 포털인 'N'사에서 이루어진 검색 약 390만 건에 대한 실험결과, 제안 방법론에 의해 추천된 쇼핑의도 포함 키워드가 단순 빈도수 기반의 키워드에 비해 정확도, 재현율, F-Score의 모든 측면에서 상대적으로 우수한 성능을 보이는 것으로 나타남을 확인할 수 있었다.

키워드의 유사도와 가중치를 적용한 연관 문서 추천 방법 (Method of Related Document Recommendation with Similarity and Weight of Keyword)

  • 임명진;김재현;신주현
    • 한국멀티미디어학회논문지
    • /
    • 제22권11호
    • /
    • pp.1313-1323
    • /
    • 2019
  • With the development of the Internet and the increase of smart phones, various services considering user convenience are increasing, so that users can check news in real time anytime and anywhere. However, online news is categorized by media and category, and it provides only a few related search terms, making it difficult to find related news related to keywords. In order to solve this problem, we propose a method to recommend related documents more accurately by applying Doc2Vec similarity to the specific keywords of news articles and weighting the title and contents of news articles. We collect news articles from Naver politics category by web crawling in Java environment, preprocess them, extract topics using LDA modeling, and find similarities using Doc2Vec. To supplement Doc2Vec, we apply TF-IDF to obtain TC(Title Contents) weights for the title and contents of news articles. Then we combine Doc2Vec similarity and TC weight to generate TC weight-similarity and evaluate the similarity between words using PMI technique to confirm the keyword association.

의미적 관계를 이용한 OWL 데이터의 키워드 질의 처리 기법 (A Keyword Query Processing Technique of OWL Data using Semantic Relationships)

  • 김연희;김성완
    • 디지털산업정보학회논문지
    • /
    • 제9권1호
    • /
    • pp.59-72
    • /
    • 2013
  • In this paper, we propose a keyword query processing technique based on semantic relationships for OWL data. The proposed keyword query processing technique can improve user's search satisfaction by performing two types of associative search. The first associative search uses information inferred by the relationships between classes or properties during keyword query processing. And it supports to search all information resources that are either directly or indirectly related with query keywords by semantic relationships between information resources. The second associative search returns not only information resources related with query keywords but also values of properties of them. We design a storage schema and index structures to support the proposed technique. And we propose evaluation functions to rank retrieved information resources according to three criteria. Finally, we evaluate the validity and accuracy of the proposed technique through experiments. The proposed technique can be utilized in a variety of fields, such as paper retrieval and multimedia retrieval.

검증 능력이 제한된 검색 가능한 공개키 암호시스템 (Public Key Encryption with Keyword Search for Restricted Testability)

  • 엄지은;이현숙;이동훈
    • 정보보호학회논문지
    • /
    • 제21권4호
    • /
    • pp.3-10
    • /
    • 2011
  • 공개키 기반의 키워드검색 시스템 (PEKS)은 암호화되어 저장된 데이터에 대한 효율적인 키워드 검색을 위해 Boneh 등에 의해 처음으로 제안되었다. 송신자는 메일내용과 키워드를 각각 수신자의 공개키로 암호화하여 서버에 전송하고, 수신자는 자신의 개인키로 키워드에 대한 트랩도어를 생성하여 키워드를 포함하는 메일을 검색할 수 있는 기법이다. 그러나 Byun 등은 PEKS 기법과 PEKS를 기반으로 한 몇 가지 기법들이 오프라인에서 키워드 추측 공격(keyword guessing attack)이 가능하다는 것을 보였다. 본 논문에서는 키워드 추측공격에 대한 안전성을 제공하는 검증 능력이 제한된 검색 가능한 공개키 암호시스템(Public Key Encryption with Keyword Search for Restricted Testability, PEKS-RT)을 제안한다.

키워드 빈도와 중심성 분석을 이용한 인공지능 보안 연구 동향 : 미국·영국·한국을 중심으로 (Research Trend on AI Security Using Keyword Frequency and Centrality Analysis : Focusing on the United States, United Kingdom, South Korea)

  • 이택균
    • 디지털산업정보학회논문지
    • /
    • 제19권4호
    • /
    • pp.13-27
    • /
    • 2023
  • In this study, we tried to identify research trends on artificial intelligence security focusing on the United States, United Kingdom, and South Korea. In Elsevier's Scopus We collected 4,983 papers related to artificial intelligence security published from 2018 to 2022 and by using the abstracts of the collected papers, Keyword frequency and centrality analysis were conducted. By calculating keyword frequency, keywords with high frequency of appearance were identified and through the centrality analysis, central research keywords were identified by country. Through the analysis results, research related to artificial intelligence, machine learning, Internet of Things, and cybersecurity in each country was conducted as the most central and highly mediating research. The implication for Korea is that research related to cybersecurity, privacy, and anomaly detection has lower centralities compared to the United States and research related to big data has lower centralities compared to United Kingdom. Therefore, various researches that intensively apply artificial intelligence technology to these fields are needed.

키워드 네트워크 분석을 활용한 과학기술동향 분석 (Analysis of Trends in Science and Technology using Keyword Network Analysis)

  • 박주섭;김나랑;한은정
    • 한국산업정보학회논문지
    • /
    • 제23권2호
    • /
    • pp.63-73
    • /
    • 2018
  • 학계나 연구소에서는 연구동향이나 과학기술동향을 파악하고 예측하기 위해 전문가들의 판단에 의존하는 정성적인 방법을 주로 활용하여 왔다. 이 기법은 많은 시간과 비용이 드는 단점이 있기에 본 논문에서는 키워드 네트워크 분석을 활용하여 과학기술 동향을 예측하였다. 이를 위해 미국 특허 중 AI(Artificial Intelligence) 특허 초록 13,618개를 대상으로 키워드 네트워크 분석을 활용하여 분석 1기(2002.1.1. ~ 2006.12.31.), 분석 2기(2007.1.1. ~ 2011.12.31.), 분석 3기(2012.1.1. ~ 2016.12.31.)로 구분하여 분석하였다. 빈도 분석 결과, 분석 1기에서 3기로 시간이 경과할수록 AI 응용 분야의 방법에 관련된 핵심어들이 부각되었다. 키워드 네트워크 분석에서도 시간이 경과함에 따라 응용 분야의 방법에 관련된 핵심어와 다른 핵심어 간의 연계성이 높아졌다. 또한 분석 전체 기간 중 상승 및 하락 추세를 보인 연계 핵심어를 분석하면 응용 분야의 방법과 관리에 대한 연계성은 강화되는 반면에 기초 분야의 연계성은 약화되었다. 키워드 연결 중심성 분석에서도 기간이 경과할수록 응용 분야에 대한 중심성 수치가 높았다. 키워드 매개 중심성 분석에서 분석 3기는 응용 분야의 방법론 관련 핵심어가 가장 높은 매개 수치를 보였다. 이는 앞으로 응용 분야의 방법들이 AI 분야의 강력한 중개자 역할을 할 것으로 예상된다. 본 논문에서 제시한 기법은 지역혁신과 관련된 과제 발굴이나 사회문제 이슈의 시각화 등 지역혁신 분야에 활용되어 질 수 있을 것이다.

키워드 네트워크 분석을 이용한 연구데이터 관련 국내 연구 동향 분석 (An Analysis of Domestic Research Trend on Research Data Using Keyword Network Analysis)

  • 한상우
    • 한국도서관정보학회지
    • /
    • 제54권4호
    • /
    • pp.393-414
    • /
    • 2023
  • 본 연구는 연구데이터 관련 국내 연구의 동향을 파악하기 위하여 RISS에서 연구데이터 관련 논문을 수집하였으며, 데이터 정제 후 총 58건의 연구논문을 대상으로 134개의 저자 키워드를 추출하여 키워드 네트워크 분석을 수행하였다. 분석 결과, 첫째, 아직까지 국내에서 연구데이터 관련 연구의 수가 58건에 지나지 않아 추후 많은 관련 연구가 진행될 필요가 있음을 알 수 있었다. 둘째, 연구데이터 관련 연구 분야는 대부분 복합학 중 문헌정보학에 집중되어 있었다. 셋째, 연구데이터 관련 저자 키워드의 빈도분석 결과 '연구데이터관리', '연구데이터공유', '데이터리포지터리', '오픈사이언스' 등이 다빈도 주요 키워드로 분석되어 연구데이터 관련 연구는 위의 키워드를 중심으로 진행되고 있음을 알 수 있었다. 키워드 네트워크 분석 결과에서도 다빈도 키워드는 연결 중심성 및 매개 중심성에서 중심적인 위치를 차지하며 관련 연구에서 핵심 키워드에 위치하고 있음을 알 수 있었다. 본 연구의 결과를 통하여 최근의 연구데이터 관련 동향을 파악할 수 있었고, 향후 집중적으로 연구해야 하는 분야를 확인할 수 있었다.

연결망 분석을 활용한 우리나라 금연연구 동향분석 (A Social Network Analysis of Research Key Words Related Smoke Cessation in South Korea)

  • 안은성
    • 보건행정학회지
    • /
    • 제29권2호
    • /
    • pp.138-145
    • /
    • 2019
  • Background: The purpose of this study is supposed to figure out the keyword network from 2009 to 2018 with social network analysis and provide the research data that can help the Korea government's policy making on smoking cessation. Methods: First, frequency analysis on the keyword was performed. After, in this study, I applied three classic centrality measures (degree centrality, betweenness centrality, and eigenvector centrality) with R 3.5.1. Moreover, I visualized the results as the word cloud and keyword network. Results: As a result of network analysis, 'smoking' and 'smoking cessation' were key words with high frequency, high degree centrality, and betweenness centrality. As a result of looking at trends in keyword, many study had been done on the keyword 'secondhand smoke' and 'adolescent' from 2009 to 2013, and 'cigarette graphic warning' and 'electronic cigarette' from 2014 to 2018. Conclusion: This study contributes to understand trends on smoking cessation study and seek further study with the keyword network analysis.