• Title/Summary/Keyword: Reinforcement direction

Search Result 300, Processing Time 0.031 seconds

An Experimental Study on Grouting Effect for Ground Reinforcement (지반보강 그라우팅 효과에 관한 실험적 연구)

  • Park, Yong-Won;Lee, Goo-Young;Park, Jong-Ho;Hong, Sung-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.399-406
    • /
    • 2004
  • This paper is experimental study on the effect of improved soil strength which was grouted by pressure grouting method for prevent collapse the tunnel's face during excavate tunnel. This study performs to investigate the proper grouting pressure and grouting method through pressure grouting laboratory model tests using loose dense sandy soil using specially designed and fabricated device($180cm{\times}220cm{\times}300cm$) under changing condition of injection in this test The investigation is carried out through measuring the size and shape of grout bulb, elastic modulus by pressure-meter test Elastic modulus was estimated using relation stress with strain which is result the uni-direction compressive strength test for cured grouted bulb under water during 28days. From these test results, the amount of increased elastic modulus of grouted zone was suggested.

  • PDF

A Study on the Development of a Corrupad Rewinding Machine with Eccentric Cantilever Structure (편심 외팔보 구조의 코러패드 재권취기 개발에 관한 연구)

  • 김강은;이종호;신대영;이우영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1609-1613
    • /
    • 2003
  • This research focused on the development of automatically exclusive production equipment of corrupad as changing manual system into automatic system to increase the output. Therefore the minimization of the problem of the rewinding mechanism with eccentric cantilever structure is key to the achievement of the high performance for automation production. Proto-type corrupad rewinding machine is manufactured after considering the effect of the rotational vibration and natural frequency of the structure of machine by using 3D design packages such as ADAMS and I-deas. For evaluating the performance of the proto-type machine, simulations of dynamic and static characteristics using 3D design packages, a series of modal tests by accelerometer and measurements of dynamic behavior by high-speed camera for rewinding part, were carried out. As a result, the proto-type machine was not affected with the rotational vibration. Whirling error of eccentric cantilever structure in driving is small. Therefore the machine developed is most suitable to produce corrupad automatically. However reinforcement of the structure in axial direction is required due to so vibration in that direction.

  • PDF

Differential cubature method for vibration analysis of embedded FG-CNT-reinforced piezoelectric cylindrical shells subjected to uniform and non-uniform temperature distributions

  • Madani, Hamid;Hosseini, Hadi;Shokravi, Maryam
    • Steel and Composite Structures
    • /
    • v.22 no.4
    • /
    • pp.889-913
    • /
    • 2016
  • Vibration analysis of embedded functionally graded (FG)-carbon nanotubes (CNT)-reinforced piezoelectric cylindrical shell subjected to uniform and non-uniform temperature distributions are presented. The structure is subjected to an applied voltage in thickness direction which operates in control of vibration behavior of system. The CNT reinforcement is either uniformly distributed or functionally graded (FG) along the thickness direction indicated with FGV, FGO and FGX. Effective properties of nano-composite structure are estimated through Mixture low. The surrounding elastic foundation is simulated with spring and shear constants. The material properties of shell and elastic medium constants are assumed temperature-dependent. The motion equations are derived using Hamilton's principle applying first order shear deformation theory (FSDT). Based on differential cubature (DC) method, the frequency of nano-composite structure is obtained for different boundary conditions. A detailed parametric study is conducted to elucidate the influences of external applied voltage, elastic medium type, temperature distribution type, boundary conditions, volume percent and distribution type of CNT are shown on the frequency of system. In addition, the mode shapes of shell for the first and second modes are presented for different boundary conditions. Numerical results indicate that applying negative voltage yields to higher frequency. In addition, FGX distribution of CNT is better than other considered cases.

Experimental Analysis on Yield Strength of Pipe Connectors and Joints for Pipe Framed Greenhouses (파이프 골조 온실의 조립 연결구 내력 시험)

  • 남상운
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.6
    • /
    • pp.113-119
    • /
    • 2001
  • Experiments on the yield strength of pipe connectors made of metal wire, joint pins, pole pipes, multi span insertion joints, and T-clamp joints used in pipe houses were conducted. The strength of connections of a pipe connector made of metal wire was adequate but it had a big difference according to loading direction. Therefore as it is installed, its direction should be taken into consideration. The collapse load of pipes connected with a joint pin was lower than that of single pipes. In the part of frame member at which the great bending moment occurs, the use of joint pin should be avoided. Also experimental results showed that pole pipes for use in a part of frame buried under the ground were safe, and the strength of multi span insertion joints should be increased. The resistant moment of T-clamp was about 13.7% of a single pipe. In case that the external forces acting on left and right rafter are different. a unsymmetrical rotational force is produced at the multi span joint. If it is expected that the actual bending moment on the multi span joint is larger than resistant moment of T-clamp, a reinforcement to safely resist the rotational force is required.

  • PDF

p-Version Nonlinear Finite Element Analysis of RC Slabs Strengthened with Externally Bonded CFRP Sheets (탄소섬유보강 플라스틱시트로 외부보강된 RC 슬래브의 p-Version 비선형 유한요소 해석)

  • Cho, Jin-Goo;Park, Jin-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.1
    • /
    • pp.61-68
    • /
    • 2006
  • The p-version nonlinear finite element model has been developed to analyze the nonlinear behavior of simply supported RC slabs strengthened with carbon fiber reinforced plastic sheets. The shape function is adopted with integral of Legendre polynomials. The compression model of concrete is based on the Kupfer's yield criterion, hardening rule, and crushing condition. The cracking behavior is modeled by a smeared crack model. In this study, the fixed crack approach is adopted as being geometrically fixed in direction once generated. Each steel layer has a uniaxial behavior resisting only the axial force in the bar direction. Identical behavior is assumed fur tension and compression of steel according to the elastic modulus. The carbon fiber reinforced plastic sheets are considered as reinforced layers of equivalent thickness with uniaxial strength and rigidity properties in the present model. It is shown that the proposed model is able to adequately predicte the displacement and ultimate load of nonlinear simply supported RC slabs by a patch with respect to reinforcement ratio, thickness and angles of CFRP sheets.

Two-dimensional thermo-elastic analysis of FG-CNTRC cylindrical pressure vessels

  • Arefi, Mohammad;Mohammadi, Masoud;Tabatabaeian, Ali;Dimitri, Rossana;Tornabene, Francesco
    • Steel and Composite Structures
    • /
    • v.27 no.4
    • /
    • pp.525-536
    • /
    • 2018
  • This paper focuses on the application of the first-order shear deformation theory (FSDT) to thermo-elastic static problems of functionally graded carbon nanotubes reinforced composite (FG-CNTRC) cylindrical pressure vessels. A symmetric displacement field is considered as unknown function along the longitudinal direction, whereas a linear distribution is assumed along the thickness direction. The cylindrical pressure vessels are subjected to an inner and outer pressure under a temperature increase. Different patterns of reinforcement are applied as distribution of CNTs. The effective material properties of FG-CNTRC cylindrical pressure vessels are measured based on the rule of mixture, whereas the governing equations of the problem are here derived through the principle of virtual works. A large parametric investigation studies the effect of some significant parameters, such as the pattern and volume fraction of CNTs, on the longitudinal distribution of deformation, strain and stress components, as useful tool for practical engineering applications.

The Study on the Effect of the Aspect Ratio and Number of Spots on the Compressive Buckling Load of two Rectangular Plates Spot-Welded by FEM (점용접된 두 사각평판의 형상비 및 용접점수가 압축좌굴하중에 미치는 영향의 유한요소해석에 의한 연구)

  • Han, Geun-Jo;Jeon, Hyung-Yong;Lee, Hyoun-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.11
    • /
    • pp.191-196
    • /
    • 1999
  • This stability of a plate structure is very crucial problem which results in wrinkle and bucking. In this study, the effect of the pattern of spot-welding points of the two rectangular plates on the compressive buckling load is studied with respect to the thickness, aspect ratio of plates, number of welding spots. buckling coefficient of the plate not welded was compared with that of two plates with various thickness to extract the effect of thickness. The effect of number of welding spots are studied in tow directions, longitudinal and transverse directions. The conclusions obtained were that the reinforcement effect was maximized when the aspect ratio was close to 1.25 and that the effect of number of welding spots in transverse direction was large than that in longitudinal direction.

  • PDF

Vegetation Restoration Plan for a Coastal Area through Ecosystem Conservation Fund Return Project: - focus on the Dalmaji-gil area, Haeundae-Gu, Busan Metropolitan City. - (생태계보전협력금 반환사업을 통한 해안 식생복원계획 - 부산 해운대구 달맞이 고개 일대를 대상으로 -)

  • Yoon, sung-young
    • Journal of Environmental Science International
    • /
    • v.28 no.2
    • /
    • pp.191-201
    • /
    • 2019
  • This study suggested a vegetation restoration plan for a coastal area where the ecosystem conservation fund return project, targeting the whole area of Dalmaji-gil, located in Haeundae, Busan. After distinguishing if it would be a proper site for the operation of the ecosystem conservation fund return project by analyzing the ecological environment, human environment, and the current status of land owners, the target species for vegetation restoration was determined, and the facilities and programs were selected in accordance with the spatial division of the biosphere reserve. The basic direction is as follows. First, is the expansion of green space and the securement of life habitats downtown. Second, is the conservation of core areas by separating the conserved area from the space for use. Third, is the establishment of ecological resting space and the reinforcement of an ecological educational programs. The significance of this study is to suggest a vegetation restoration plan of a coastal area, fully utilizing the existing vegetation of the subject area, by suggesting the land use and flow planning, environmental improvement (vegetation restoration) plan, life habitats establishment plan, planting plan, and hydrologic plan, facilities, maintenance, and monitoring plan based on the basic direction. This study would provide useful basic data for ecosystem conservation and restoration in the Korean Peninsula, surrounded by the ocean on three sides.

Equivalent reinforcement isotropic model for fracture investigation of orthotropic materials

  • Fakoor, Mahdi;Rafiee, Roham;Zare, Shahab
    • Steel and Composite Structures
    • /
    • v.30 no.1
    • /
    • pp.1-12
    • /
    • 2019
  • In this research, an efficient mixed mode I/II fracture criterion is developed for fracture investigation of orthotropic materials wherein crack is placed along the fibers. This criterion is developed based on extension of well-known Maximum Tensile Stress (MTS) criterion in conjunction with a novel material model titled as Equivalent Reinforced Isotropic Model (ERIM). In this model, orthotropic material is replaced with an isotropic matrix reinforced with fibers. A comparison between available experimental observations and theoretical estimation implies on capability of developed criterion for predicting both crack propagation direction and fracture instance, wherein the achieved fracture limit curves are also compatible with fracture mechanism of orthotic materials. It is also shown that unlike isotropic materials, fracture toughness of orthotic materials in mode $I(K)_{IC}{\mid})$ cannot be introduced as the maximum load bearing capacity and thus new fracture mechanics property, named here as maximum orthotropic fracture toughness in mode $I(K_{IC}{\mid}^{ortho}_{max})$ is defined. Optimum angle between crack and fiber direction for maximum load bearing in orthotropic materials is also defined.

Improved of Mechanical Properties and Functionalization of Polycarbonate by Adding Carbon Materials (탄소재료 첨가에 의한 Polycarbonate의 기계적 물성 향상 및 기능화에 관한 연구)

  • Kim, Jeong-Keun;Choi, Sun-Ho;Go, Sun-Ho;Kwac, Lee-Ku;Kang, Sung-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.10
    • /
    • pp.59-67
    • /
    • 2020
  • Polycarbonate thermoplastic composite materials are anisotropic and exhibit physical properties in the longitudinal direction. Therefore, the physical properties depend on the type and direction of reinforcements. The thermal conductivity, electrical conductivity, and resin impregnation can be controlled by adding carbon nanotubes to polycarbonate resin. However, the carbon fiber used as a reinforcing material is expensive, interfacial adhesion issues occur, and simulation values are different from actual values, making it difficult to perform mathematical analysis. However, carbon nanotubes have advantages such as light weight, rigidity, impact resistance, and reduced number of parts compared to metals. Due to these advantages, it has been applied to various products to reduce weight, improve corrosion resistance, and increase impact durability. As the content of carbon nanotubes or carbon fibers increases, the mechanical properties and antistatic and electromagnetic shielding performance improve. It is expected that the amount of carbon nanotubes or carbon fibers can be optimized and applied to various industrial products.