• Title/Summary/Keyword: Reinforcement Water

Search Result 473, Processing Time 0.028 seconds

A Study on the Development of Rapidly Hardening Grouting Method for the Effective Filling in the Underground Cavity (지하공동의 효율적 충전을 위한 급결 충전 그라우트공법개발에 관한 연구)

  • Kim, Soo-Lo;Kim, Tae-Heok;Shin, Dong-Chun;Kwon, Hyun-Ho
    • Tunnel and Underground Space
    • /
    • v.19 no.6
    • /
    • pp.534-544
    • /
    • 2009
  • The collapse of the underground cavity can cause the abrupt local subsidence of the ground surface. It can be hazardous to the stability of road and building for human activity. Therefore it is necessary to develop reinforcement methods for the filling of the underground cavity. This study was executed to improve the material quality and systems to fill the calcium-aluminate mineral $(C_{12}A_7)$ environmentally, and minimize the loss of filling materials for the steep underground cavity. Filling material which was developed in this study is composed of rapid hardening material and additives. The developed material had rapid hardening and non-separation ability in the water cavity condition, so it made the effective underground dam in the cavity with prevention of material loss when it was poured in the water cavity. Results of heavy metal leaching test for environmental assessment showed that it was environmentally suiTable material for the filling in the mine cavity.

2-D SU/PG Finite Element Model Using Quadratic Elements (2차 요소를 이용한 2차원 상향가중 유한요소모형)

  • Choi, Seung-Yong;Kim, Byung-Hyun;Kim, Sang-Ho;Han, Kun-Yeun
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.12
    • /
    • pp.1053-1067
    • /
    • 2009
  • The objective of this study is to develop an efficient and accurate quadratic finite element model based on Streamline Upwind/Petrov Galerkin (SU/PG) scheme for analyzing and predicting two dimensional flow features in complex natural rivers. For a development of model, quadratic tin, quadrilateral and mixed elements as well as linear tin, quadrilateral and mixed elements were used in the model. Also, this model was developed through reinforcement of Gauss Quadrature which was necessary to integral of governing equation. Several tests for bottom-rising channel and U-type channel were performed for the purpose of validation and verification of the developed model. Such results showed that solutions of second order elements are better accurate and improved than those of linear elements. Results obtained by the developed model and RMA-2 model are compared, and the results for the developed model were better accurate than those of RMA-2 model. In the future if the developed model is applied in natural rivers, it can provide better accurate results than those of existing model.

A Case Study for Energy Consumption Characteristics of High School Facilities in Seoul (서울지역 고등학교 건물의 에너지소비특성에 관한 사례분석)

  • Kim, Sung-Bum;Oh, Byung-Chil;Shin, U-Cheul
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.6
    • /
    • pp.61-69
    • /
    • 2016
  • In this study, we analyzed five-year(2011~2015) data for D high school in Seoul area to analyze energy consumption characteristics in high school. The results are summarized as follows. (1) In the result of comparison analysis about 2015 energy consumption by usage, based on primary energy, 18% of energy was consumed in cafeteria, and 82% was consumed in main building. In the case of main building, base and constant load excepting hot water supply in restroom took 40%, heating including freeze protection took 20%, hot water supply in restroom took 14%, and cooling took 8% in order. (2) In the 2015 total energy consumption in D high school based on primary energy, heating energy takes 28%. The range and limit of energy savings coming from the reinforcement of insulation and window performance could be estimated. (3) To introduce new & renewable energy system in high school, electricity-based system is suitable than heat-based system because usage of electric energy is larger than that of heat energy in high school. (4) Five-year energy consumption unit according to heating degree-day showed a linearly increasing trend, and the coefficient of determination(R2) was 0.9763, which means high correlation.

Stability Analysis of Geocell Reinforced Slope During Rainfall (강우 시 지오셀 보강 사면의 안정성 평가에 관한 연구)

  • Shin, Eun-Chul;Kim, Jang-Ill
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.33-41
    • /
    • 2017
  • In this study, the increment effect of safety factor according to increasing of horizontal permeability coefficient is analyzed when geocell is installed on the slope for protection. To evaluate the horizontal permeability and reinforcement effect, the laboratory tests such horizontal permeability test were conducted. According to the laboratory test results, as the porosity rate of geocell increases, the coefficient of horizontal permeability is also increased. And also, regardless of the different types of filled materials, the coefficient of horizontal permeability is improved in a geocell reinforced ground compare with the non-reinforced ground. Laboratory test results and the rainfall intensity were applied to the numerical modeling of slope for seepage analysis and stability analysis of slope by using Soilworks, numerical analysis program. As a result of the slope stability analysis, it is confirmed that the installed geocell on the slope facilitates the drainage of water on the surface of slope. Hence, the ground water elevation is suppressed. Therefore, the safety factor of the slope is increased by the increasing of the internal friction angle, apparent cohesion, and coefficient of horizontal permeability by reinforcing the slope with geocell.

Case Study on Application of Geophysical Survey in the Weathered Slope including Core Stones (핵석을 포함하는 풍화사면에서의 지구물리탐사 적용사례 연구)

  • Hong, Won-Pyo;Kim, Jae-Hong;Ro, Byung-Don;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.19 no.1
    • /
    • pp.89-98
    • /
    • 2009
  • Existence of core stone at the inside of the Rock mass is reacting as unstable element. In particular, in case of the cut slope, even when it is not exposed, slope's discontinuity increases or strength level decreases depending on the difference in the weathering grade when it comes to the core stone, and reacts as an important element of the slope movement such as slope's rock fall or collapse. As for the slope that is subject to study, incision was completed after 20 years or so, and parts of the slope reinforcement was completed, but frequent rock fall occurs despite small amount of rainfall, and permanent stability measures are urgent. Refractional seismic survey and geological survey results were compared and analyzed, and reliability was improved by complementing the two survey methods, and stereo-graphic projection using DIPS program was conducted to analyze the characteristics of oore stone in the weathered soil slope.

Experimental Study on Cement Cohesion Reduction Effect of Grout Mixer with Vibration Filter (진동필터가 설치된 그라우트 믹서의 시멘트 응집 저감 효과에 대한 실험적 연구)

  • Hwang, Sung-Pil;Jeoung, Jae-Hyeung;Kim, Chang-Yong;Lee, Woo-Je
    • The Journal of Engineering Geology
    • /
    • v.28 no.1
    • /
    • pp.61-67
    • /
    • 2018
  • Grouting is reinforcement or cutoff method which uses the hardening agent which is typically represented by portland cement and injected into the ground or the structure. When mixing the cement in powder form with water, the particles tend to cohere each other. Once they cohered, the particle size tends to become larger while injection efficiency becomes lower. This study, in a bid to reduce the cohesion of cement, the screen was set inside the grout mixer so that the cement particles are separated while vibrating them. To validate the effect of vibration screen, comparison test was conducted by using ordinary portland cement, slag cement and micro cement. Viscosity test, bleeding test and grain-size analysis indicated that the characteristics varied significantly after passing through the vibration filter. It is expected that the vibration filter installed inside the grout mixer will reduce the cement cohesion when mixing with water.

Artificial neural network model using ultrasonic test results to predict compressive stress in concrete

  • Ongpeng, Jason;Soberano, Marcus;Oreta, Andres;Hirose, Sohichi
    • Computers and Concrete
    • /
    • v.19 no.1
    • /
    • pp.59-68
    • /
    • 2017
  • This study focused on modeling the behavior of the compressive stress using the average strain and ultrasonic test results in concrete. Feed-forward backpropagation artificial neural network (ANN) models were used to compare four types of concrete mixtures with varying water cement ratio (WC), ordinary concrete (ORC) and concrete with short steel fiber-reinforcement (FRC). Sixteen (16) $150mm{\times}150mm{\times}150mm$ concrete cubes were used; each contained eighteen (18) data sets. Ultrasonic test with pitch-catch configuration was conducted at each loading state to record linear and nonlinear test response with multiple step loads. Statistical Spearman's rank correlation was used to reduce the input parameters. Different types of concrete produced similar top five input parameters that had high correlation to compressive stress: average strain (${\varepsilon}$), fundamental harmonic amplitude (A1), $2^{nd}$ harmonic amplitude (A2), $3^{rd}$ harmonic amplitude (A3), and peak to peak amplitude (PPA). Twenty-eight ANN models were trained, validated and tested. A model was chosen for each WC with the highest Pearson correlation coefficient (R) in testing, and the soundness of the behavior for the input parameters in relation to the compressive stress. The ANN model showed increasing WC produced delayed response to stress at initial stages, abruptly responding after 40%. This was due to the presence of more voids for high water cement ratio that activated Contact Acoustic Nonlinearity (CAN) at the latter stage of the loading path. FRC showed slow response to stress than ORC, indicating the resistance of short steel fiber that delayed stress increase against the loading path.

The Study of Polar Effects of Aluminium Sulfate on the Reduction of Phenolic Resin Spreading Content for the Manufacture of Plywood (황산(黃酸)알루미늄의 극성효과(極性效果)로 인(因)한 합판용(合板用) 페놀 수지(樹脂) 도포량(塗布量)의 감소(減少)에 관(關)한 연구(硏究))

  • Lee, Joung-Sin;Lee, Hwa-Hyoung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.29-35
    • /
    • 1986
  • This study was carried out to examine the effect of aluminium sulfate addition to the alkali-acid catalyst phenolic resin for the manufacture of the kapur (Dryobalanops spp.) plywood on the reduction of phenolic resin spreading. On the manufacture of plywood, Adhesive Contents such as 50g/$m^2$, 75g/$m^2$ and 150g/$m^2$ were treated. The spreading adhesive content of 50g/$m^2$ and 75g/$m^2$ had been controlled to about 150g/$m^2$ added with the water in order to get sufficient spreading and controlled to pH 4.5 with aluminium sulfate [$Al_2(SO_4)_3$]. The results are summarized as follows: 1. Specific gravities of air dried plywood manufactured from each adhesive ranged from 0.77 to 0.86 and their moisture contents met the KS requirements. 2. In dry and wet shear strengths, 150 $P_{Al{\cdot}Ac}$ adhesive showed the highest and 75 $P_{Al{\cdot}Ac{\cdot}Am}$ adhesive indicated higher value than 150 $P_{Al{\cdot}Ac}$ adhesive. 3. In case of glue shear strength after boiling test, 150 $P_{Al{\cdot}Ac}$ adhesive was the best and adding of aluminium sulfate was not effective on reinforcement of boiling water resistance of phenolic resin, but met KS requirements. 4. 75 $P_{Al{\cdot}Ac{\cdot}Am}$ adhesive showed the good shear strength and met KS requirements. Therefore, adding of aluminium sulfate was very efficient for economical plywood manufacture.

  • PDF

Impact of aggressive exposure conditions on sustainable durability, strength development and chloride diffusivity of high performance concrete

  • Al-Bahar, Suad;Husain, A.
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.1
    • /
    • pp.35-48
    • /
    • 2015
  • The main objective of this study is to evaluate the long-term performance of various concrete composites in natural marine environment prevailing in the Gulf region. Durability assessment studies of such nature are usually carried out under aggressive environments that constitute seawater, chloride and sulfate laden soils and wind, and groundwater conditions. These studies are very vital for sustainable development of marine and off shore reinforced concrete structures of industrial design such as petroleum installations. First round of testing and evaluation, which is presented in this paper, were performed by standard tests under laboratory conditions. Laboratory results presented in this paper will be corroborated with test outcome of ongoing three years field exposure conditions. The field study will include different parameters of investigation for high performance concrete including corrosion inhibitors, type of reinforcement, natural and industrial pozzolanic additives, water to cement ratio, water type, cover thickness, curing conditions, and concrete coatings. Like the laboratory specimens, samples in the field will be monitored for corrosion induced deterioration signs and for any signs of failureover initial period ofthree years. In this paper, laboratory results pertaining to microsilica (SF), ground granulated blast furnace slag (GGBS), epoxy coated rebars and calcium nitrite corrosion inhibitor are very conclusive. Results affirmed that the supplementary cementing materials such as GGBS and SF significantly impacted and enhanced concrete resistivity to chloride ions penetration and hence decrease the corrosion activities on steel bars protected by such concretes. As for epoxy coated rebars applications under high chloride laden conditions, results showed great concern to integrity of the epoxy coating layer on the bar and its stability. On the other hand corrosion inhibiting admixtures such as calcium nitrite proved to be more effective when used in combination with the pozzolanic additives such as GGBS and microsilica.

Influence of various metal oxides on mechanical and physical properties of heat-cured polymethyl methacrylate denture base resins

  • Asar, Neset Volkan;Albayrak, Hamdi;Korkmaz, Turan;Turkyilmaz, Ilser
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.3
    • /
    • pp.241-247
    • /
    • 2013
  • PURPOSE. To evaluate the effect of various metal oxides on impact strength (IS), fracture toughness (FT), water sorption (WSP) and solubility (WSL) of heat-cured acrylic resin. MATERIALS AND METHODS. Fifty acrylic resin specimens were fabricated for each test and divided into five groups. Group 1 was the control group and Group 2, 3, 4 and 5 (test groups) included a mixture of 1% $TiO_2$ and 1% $ZrO_2$, 2% $Al_2O_3$, 2% $TiO_2$, and 2% $ZrO_2$ by volume, respectively. Rectangular unnotched specimens ($50mm{\times}6.0mm{\times}4.0mm$) were fabricated and drop-tower impact testing machine was used to determine IS. For FT, compact test specimens were fabricated and tests were done with a universal testing machine with a cross-head speed of 5 mm/min. For WSP and WSL, disc-shaped specimens were fabricated and tests were performed in accordance to ISO 1567. ANOVA and Kruskal-Wallis tests were used for statistical analyses. RESULTS. IS and FT values were significantly higher and WSP and WSL values were significantly lower in test groups than in control group (P<.05). Group 5 had significantly higher IS and FT values and significantly lower WSP values than other groups (P<.05) and provided 40% and 30% increase in IS and FT, respectively, compared to control group. Significantly lower WSL values were detected for Group 2 and 5 (P<.05). CONCLUSION. Modification of heat-cured acrylic resin with metal oxides, especially with $ZrO_2$, may be useful in preventing denture fractures and undesirable physical changes resulting from oral fluids clinically.