• Title/Summary/Keyword: Reinforcement Cracking

Search Result 364, Processing Time 0.03 seconds

Post-cracking behavior of UHPC on the concrete members reinforced by steel rebar

  • Rahdar, H.A.;Ghalehnovi, M.
    • Computers and Concrete
    • /
    • v.18 no.1
    • /
    • pp.139-154
    • /
    • 2016
  • Since the concrete strength around the reinforcement rebar affects the tension stiffening, the tension stiffening effect of ultra high performance concrete on the concrete members reinforced by steel rebar is examined by testing the specimens with circular cross section with the length 850 mm reinforced by a steel rebar at the center of a specimen's cross section in this research. Conducting a tensile test on the specimens, the cracking behavior is evaluated and a curve with an exponential descending branch is obtained to explain the post-cracking zone. In addition, this paper proposes an equation for this branch and parameters of equation is obtained based on the ratio of cover thickness to rebar diameter (c/d) and reinforcement percentage (${\rho}$).

Bond strength modeling for corroded reinforcement in reinforced concrete

  • Wang, Xiaohui;Liu, Xila
    • Structural Engineering and Mechanics
    • /
    • v.17 no.6
    • /
    • pp.863-878
    • /
    • 2004
  • Steel corrosion in reinforced concrete structures leads to concrete cover cracking, reduction of bond strength, and reduction of steel cross section. Among theses consequences mentioned, reduction of bond strength between reinforcement and concrete is of great importance to study the behaviour of RC members with corroded reinforcement. In this paper, firstly, an analytical model based on smeared cracking and average stress-strain relationship of concrete in tension is proposed to evaluate the maximum bursting pressure development in the cover concrete for noncorroded bar. Secondly, the internal pressure caused by the expansion of the corrosion products is evaluated by treating the cracked concrete as an orthotropic material. Finally, bond strength for corroded reinforcing bar is calculated and compared with test results.

Evaluation of Mechanical Properties and Crack Resistant Performance in Concrete with Steel Fiber Reinforcement and CSA Expansive Admixture (CSA 팽창재를 혼입한 강섬유 보강 콘크리트의 역학적 성능 및 균열 저항성능 평가)

  • Choi, Se-Jin;Park, Ki-Tae;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.75-83
    • /
    • 2014
  • In order to prevent brittle failure of concrete, steel fiber reinforcement is effective composite material. However ductility of steel fiber reinforced concrete may be limited due to shrinkage caused by large content of cement binder. Chemical prestressing for steel fiber reinforcement in cement matrix can be induced through expansive admixture and this can increase reinforcing effect of steel fiber. In this study, mechanical performances in concrete with CSA (Calcium sulfoaluminate) expansive admixture and steel fiber reinforcement are evaluated. For this work, steel fiber reinforcement of 1 and 2% of volume ratio and CSA expansive admixture of 10% weight ratio of cement are added in concrete. Mechanical and fracture properties are evaluated in concrete with steel fiber reinforcement and CSA expansive admixture. CSA concrete with steel fiber reinforcement shows increase in tensile strength, initial cracking load, and ductility performance like enlarged fracture energy after cracking. With appropriate using expansive admixture and optimum ratio of steel fiber reinforcement, their interactive action can effectively improve brittle behavior in concrete.

Minimum shear reinforcement ratio of prestressed concrete members for safe design

  • Park, Min-Kook;Lee, Deuck Hang;Ju, Hyunjin;Hwang, Jin-Ha;Choi, Seung-Ho;Kim, Kang Su
    • Structural Engineering and Mechanics
    • /
    • v.56 no.2
    • /
    • pp.317-340
    • /
    • 2015
  • Design codes have specified the minimum shear reinforcement requirement for reinforced concrete (RC) and prestressed concrete (PSC) members to prevent brittle and premature shear failure. They are, however, very different from one another, and particularly, ACI318 code allows the required minimum shear reinforcement to be reduced in PSC members, compared to that in RC members, by specifying the additional equation for PSC members whose basis is not clear. In this paper, the minimum shear reinforcement ratio for PSC members was proposed, which can provide a sufficient reserved shear strength and deformation capacity. The proposed equation was also verified by the test results of PSC specimens lightly reinforced in shear, comparing to design codes and other proposed equations from previous studies.

The stiffness-degradation law of base metal after fatigue cracking in steel bridge deck

  • Liang Fang;Zhongqiu Fu;Bohai Ji;Xincheng Li
    • Steel and Composite Structures
    • /
    • v.47 no.2
    • /
    • pp.239-251
    • /
    • 2023
  • The stiffness evaluation of cracked base metal is of great guidance to fatigue crack reinforcement. By carrying out fatigue tests and numerical simulation of typical cracking details in steel box girder, the strain-degradation law of cracked base metal was analyzed and the relationship between base metal stress and its displacement (stiffness) was explored. The feasibility of evaluating the stress of cracked base metal based on the stress field at the crack tip was verified. The results demonstrate that the stiffness of cracked base metal shows the fast-to-slow degradation trend with fatigue cracking and the base metal at 50mm or more behind the crack tip basically lose its bearing capacity. Drilling will further accelerate stiffness degradation with the increase of hole diameters. The base metal stress has a negative linear relation with its displacement (stiffness), The stress of cracked base metal is also related to stress intensity factor and its relative position (distance, included angle) to the crack tip, through which the local stiffness can be effectively evaluated. Since the stiffness is not uniformly distributed along the cracked base metal, the reinforcement patch is suggested to be designed according to the stiffness to avoid excessive reinforcement for the areas incompletely unloaded.

Crack Control in Beams and One-Way Slabs (보 및 1방향 슬래브의 균열제어)

  • Min, Chang-Shik
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.4
    • /
    • pp.381-390
    • /
    • 2012
  • The KCI Building Code (2003 and 2007) provisions to control flexural cracking in beams and one-way slabs are discussed for related researches and the development of the provisions. Based on the basic ideas over the development of current provisions, possible problems with cracking control are identified and discussed for the remedies to fix the problems. Simple and clear equations to control flexural cracking in beams and one-way slabs are presented. The presented equations would avoid any conflicts with other provisions for the spacing of reinforcement.

Stochastic modelling and lifecycle performance assessment of bond strength of corroded reinforcement in concrete

  • Chen, Hua-Peng;Nepal, Jaya
    • Structural Engineering and Mechanics
    • /
    • v.54 no.2
    • /
    • pp.319-336
    • /
    • 2015
  • Life cycle performance of corrosion affected RC structures is an important and challenging issue for effective infrastructure management. The accurate condition assessment of corroded RC structures mainly depends on the effective evaluation of deterioration occurring in the structures. Structural performance deterioration caused by reinforcement corrosion is a complex phenomenon which is generally uncertain and non-decreasing. Therefore, a stochastic modelling such as the gamma process can be an effective tool to consider the temporal uncertainty associated with performance deterioration. This paper presents a time-dependent reliability analysis of corrosion affected RC structures associated bond strength degradation. Initially, an analytical model to evaluate cracking in the concrete cover and the associated loss of bond between the corroded steel and the surrounding cracked concrete is developed. The analytical results of cover surface cracking and bond strength deterioration are examined by experimental data available. Then the verified analytical results are used for the stochastic deterioration modelling, presented here as gamma process. The application of the proposed approach is illustrated with a numerical example. The results from the illustrative example show that the proposed approach is capable of assessing performance of the bond strength of concrete structures affected by reinforcement corrosion during their lifecycle.

Proposed Detailing of Reinforcement to Enhance the Structural Performance in Two-way Slab System (이방향 슬래브의 구조성능 향상을 위한 배근상세의 제안)

  • ;Denis Mitchell
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.379-384
    • /
    • 1998
  • To overcome the common deficiencies found in such two-way slabs, such as excessive cracking around columns, excessive deflections and low punching shear strength, it was proposed to investigate the strategic reinforcing steel distribution detailings. Concentration of the top mat of flexural reinforcement result in a higher punching shear resistance, higher post cracking stiffness, a more uniform distribution of strains in the top bars and smaller cracks at all levels of loading.

  • PDF

An Experimental Study on the Shear Strength of R.C Beam with Web reinforcement (전단보강이 된 철근콘크리트보의 전단강도에 관한 실험적 연구)

  • 이근광;홍기섭;신영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.184-189
    • /
    • 1993
  • This is an experimental investigation the shear behavior of reinforced concrete with stirrup of which stress ranges 0.0㎏/㎠ to 7.0㎏/㎠. Five rectangular beams which concrete strengths are 287㎏/㎠ and 380㎏/㎠, a/d=3, and main steel ratio equal to 1.96% was tested. Those were designed to fail in shear. The shear cracking load and failure load were measured and compared with ACI's equation and Zutty's proposed equation. The results are following : ACI equation and Zutty's equation are consertive. As the concrete compressive strength increased, reserved shear strength of beams with minimum web reinforcement decreases. According to increase of web reinforcement , the rate of increases of shear strength is decreased. The failure modes of specimen with minimum web reinforcement are shear compression failure which is reached after diagonal shear cracking.

  • PDF

An experimental and numerical investigation on the effect of longitudinal reinforcements in torsional resistance of RC beams

  • Khagehhosseini, A.H.;Porhosseini, R.;Morshed, R.;Eslami, A.
    • Structural Engineering and Mechanics
    • /
    • v.47 no.2
    • /
    • pp.247-263
    • /
    • 2013
  • It is evident that torsional resistance of a reinforced concrete (RC) member is attributed to both concrete and steel reinforcement. However, recent structural design codes neglect the contribution of concrete because of cracking. This paper reports on the results of an experimental and numerical investigation into the torsional capacity of concrete beams reinforced only by longitudinal rebars without transverse reinforcement. The experimental investigation involves six specimens tested under pure torsion. Each specimen was made using a cast-in-place concrete with different amounts of longitudinal reinforcements. To create the torsional moment, an eccentric load was applied at the end of the beam whereas the other end was fixed against twist, vertical, and transverse displacement. The experimental results were also compared with the results obtained from the nonlinear finite element analysis performed in ANSYS. The outcomes showed a good agreement between experimental and numerical investigation, indicating the capability of numerical analysis in predicting the torsional capacity of RC beams. Both experimental and numerical results showed a considerable torsional post-cracking resistance in high twist angle in test specimen. This post-cracking resistance is neglected in torsional design of RC members. This strength could be considered in the design of RC members subjected to torsion forces, leading to a more economical and precise design.