• Title/Summary/Keyword: Reinforced foundation

Search Result 420, Processing Time 0.024 seconds

A Study on the Estimation of Ultimate Bearing Capacity of Granular Group Piles (조립토 군말뚝의 극한지지력 평가에 관한 연구)

  • 김홍택;강인규
    • Geotechnical Engineering
    • /
    • v.14 no.5
    • /
    • pp.143-162
    • /
    • 1998
  • In the present study, a procedure to predict the depth from the ground surface to the center of bulging failure zone in each of the square granular group piles under a rigid mat foundation is proposed. This analytical procedure is established on the basis of the conical modeling of bulging failure shape and the replacement ratio of soft foundation soils. considering the effect of a share of procedure to estimate the ultimate cylindrical pressure in the area reinforced with granular piles and the ultimate bearing capacity of each of granular piles in group. This analytical procedure is also established on the basis of the pre-determined depth to the zone of bulging failure and an iterative solution technique. Finally the analytical procedures proposed in this study are verified by analyzing the results of 3D finite element analyses, and the predictions of ultimate bearing capacity of granular piles are compared with the results obtained from the tests, empirical equation and 3D finite element analyses.

  • PDF

Nanotechnology, smartness and orthotropic nonhomogeneous elastic medium effects on buckling of piezoelectric pipes

  • Mosharrafian, Farhad;Kolahchi, Reza
    • Structural Engineering and Mechanics
    • /
    • v.58 no.5
    • /
    • pp.931-947
    • /
    • 2016
  • The effects of nanotechnology and smartness on the buckling reduction of pipes are the main contributions of present work. For this ends, the pipe is simulated with classical piezoelectric polymeric cylindrical shell reinforced by armchair double walled boron nitride nanotubes (DWBNNTs), The structure is subjected to combined electro-thermo-mechanical loads. The surrounding elastic foundation is modeled with a novel model namely as orthotropic nonhomogeneous Pasternak medium. Using representative volume element (RVE) based on micromechanical modeling, mechanical, electrical and thermal characteristics of the equivalent composite are determined. Employing nonlinear strains-displacements and stress-strain relations as well as the charge equation for coupling of electrical and mechanical fields, the governing equations are derived based on Hamilton's principal. Based on differential quadrature method (DQM), the buckling load of pipe is calculated. The influences of electrical and thermal loads, geometrical parameters of shell, elastic foundation, orientation angle and volume percent of DWBNNTs in polymer are investigated on the buckling of pipe. Results showed that the generated ${\Phi}$ improved sensor and actuator applications in several process industries, because it increases the stability of structure. Furthermore, using nanotechnology in reinforcing the pipe, the buckling load of structure increases.

Seismic behavior of RC framed shear wall buildings as per IS 1893 and IBC provisions

  • Jayalekshmi, B.R.;Chinmayi, H.K.
    • Geomechanics and Engineering
    • /
    • v.9 no.1
    • /
    • pp.39-55
    • /
    • 2015
  • Usually the analyses of structures are carried out by assuming the base of structures to be fixed. However, the soil beneath foundation alters the earthquake loading and varies the response of structure. Hence, it is not realistic to analyze structures by considering it to be fixed. The importance of soil-structure interaction was realized from the past failures of massive structures by neglecting the effect of soil in seismic analysis. The analysis of massive structures requires soil flexibility to be considered to avoid failure and ensure safety. Present study, considers the seismic behavior of multi-storey reinforced concrete narrow and wide buildings of various heights with and without shear wall supported on raft foundation incorporating the effect of soil flexibility. Analysis of the three dimensional models of six different shear wall positions founded on four different soils has been carried out using finite element software LS DYNA. The study investigates the differences in spectral acceleration coefficient (Sa/g), base shear and storey shear obtained following the seismic provisions of Indian standard code IS: 1893 (2002) (IS) and International building code IBC: 2012 (IBC). The base shear values obtained as per IBC provisions are higher than IS values.

Buckling analysis of nanocomposite cut out plate using domain decomposition method and orthogonal polynomials

  • Jamali, M.;Shojaee, T.;Kolahchi, R.;Mohammadi, B.
    • Steel and Composite Structures
    • /
    • v.22 no.3
    • /
    • pp.691-712
    • /
    • 2016
  • In this editorial, buckling analytical investigation of the nanocomposite plate with square cut out reinforced by carbon nanotubes (CNTs) surrounded by Pasternak foundation is considered. The plate is presumed has square cut out in center and resting on Pasternak foundation. CNTs are used as amplifier in plate for diverse distribution, such as uniform distribution (UD) and three patterns of functionally graded (FG) distribution types of CNTs (FG-X, FG-A and FG-O). Moreover, the effective mechanical properties of nanocomposite plate are calculated from the rule of mixture. Domain decomposition method and orthogonal polynomials are applied in order to define the shape function of nanocomposite plate with square cut out. Finally, Rayleigh-Ritz energy method is used to obtain critical buckling load of system. A detailed parametric study is conducted to explicit the effects of the dimensions of plate, length of square cut out, different distribution of CNTs, elastic medium and volume fraction of CNTs. It is found from results that increase the dimensions of plate and length of square cut out have negative impact on buckling behavior of system but considering CNTs in plate has positive influence.

Pulsating fluid induced dynamic stability of embedded viscoelastic piezoelectric separators using different cylindrical shell theories

  • Pour, H. Rahimi;Arani, A. Ghorbanpour;Sheikhzadeh, Gh.
    • Steel and Composite Structures
    • /
    • v.24 no.4
    • /
    • pp.499-512
    • /
    • 2017
  • This paper deals with nonlinear dynamic stability of embedded piezoelectric nano-composite separators conveying pulsating fluid. For presenting a realistic model, the material properties of structure are assumed viscoelastic based on Kelvin-Voigt model. The separator is reinforced with single-walled carbon nanotubes (SWCNTs) which the equivalent material properties are obtained by mixture rule. The separator is surrounded by elastic medium modeled by nonlinear orthotropic visco Pasternak foundation. The separator is subjected to 3D electric and 2D magnetic fields. For mathematical modeling of structure, three theories of classical shell theory (CST), first order shear deformation theory (FSDT) and sinusoidal shear deformation theory (SSDT) are applied. The differential quadrature method (DQM) in conjunction with Bolotin method is employed for calculating the dynamic instability region (DIR). The detailed parametric study is conducted, focusing on the combined effects of the external voltage, magnetic field, visco-Pasternak foundation, structural damping and volume percent of SWCNTs on the dynamic instability of structure. The numerical results are validated with other published works as well as comparing results obtained by three theories. Numerical results indicate that the magnetic and electric fields as well as SWCNTs as reinforcer are very important in dynamic instability analysis of structure.

Using modified Halpin-Tsai approach for vibrational analysis of thick functionally graded multi-walled carbon nanotube plates

  • Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.23 no.6
    • /
    • pp.657-668
    • /
    • 2017
  • In the most of previous studies, researchers have restricted their own studies to consider the effect of single walled carbon nanotubes as a reinforcement on the vibrational behavior of structures. In the present work, free vibration characteristics of functionally graded annular plates reinforced by multi-walled carbon nanotubes resting on Pasternak foundation are presented. The response of the elastic medium is formulated by the Winkler/Pasternak model. Modified Halpin-Tsai equation was used to evaluate the Young's modulus of the multi-walled carbon nanotube/epoxy composite samples by the incorporation of an orientation as well as an exponential shape factor in the equation. The exponential shape factor modifies the Halpin-Tsai equation from expressing a straight line to a nonlinear one in the multi-walled carbon nanotubes wt% range considered. The 2-D generalized differential quadrature method as an efficient and accurate numerical tool is used to discretize the equations of motion and to implement the various boundary conditions. The effects of two-parameter elastic foundation modulus, geometrical and material parameters together with the boundary conditions on the frequency parameters of the plates are investigated. This study serves as a benchmark for assessing the validity of numerical methods or two-dimensional theories used to analysis of annular plates.

Reinforcing Effect of Cohesionless Slope by Reticulated Root Piles (비점착성 사면의 그물식 뿌리말뚝의 보강효과)

  • Yoo, Nam-Jea;Park, Byung-Soo;Choi, Jong-Sang
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.7-16
    • /
    • 1998
  • This paper is an experimental study of investigating the reinforcing effect and the behavior of cohesionless slope installed with reticulated root pils. Reduced scale model tests with plane strain conditions were performed to study the behavior of the strip footing located on the surface of cohesionless slopes reinforced with root piles. Model tests were carried out with Jumunjin Standard Sand of 45% relative density prepared by raining method to have an uniform slope foundation during tests. Slope of model foundation was 1 : 1.5 and a rigid model slop. Parametric model tests were performed with changing location of model footing, arrangements of root piles and angles of pile installation. On the other hands, the technique with camera shooting was used to monitor sliding surface formed with discontinuty of dyed sand prepared during formation o foudation. From test results, parameters affecting the behavior of model footing were analyzed qualitatively to evaluate their effects on the characteristic of load - settlement, ultimate bearing capacity of model footing and failure mechanism based on the formation of failure surface.

  • PDF

An analysis of the farm silo supported by ground (地盤과 構造物사이의 相互作用을 考慮한 農業用 사이로의 解析에 관한 硏究(Ⅰ) - 第 1 報 模型 및 프로그램의 開發 -)

  • Cho, Jin-Goo;Cho, Hyun-Young
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.27 no.2
    • /
    • pp.38-46
    • /
    • 1985
  • The reinforced concrete farm silos on the elastic foundatin are widely used in agricultural engineering because of their superior structural performance, economy and attractive appearance. Various methods for the analysis and design of farm silo, such as the analytical method, the finite difference method, and the finite element methods, can be used. But the analytical procedure can not be applied for the intricate conditions in practice. Therefore lately the finite element method has been become in the structural mechanics. In this paper, a method of finite element analysis for the cylindrical farm silo on ffness matrix for the elastic foundation governed by winkler's assumption. A complete computer programs have been developed in this paper can be applicable not only to the shell structures on elastic foundation but also to the arbitrary three dimensional structures. Assuming the small deflection theory, the membrane and plate bending behaviours of flat plate element can be assumed mutually uncoupled. In this case, the element has 5 degrees of freedom per node when defined in the local coordinate system. However, when the element properties are transformed to the global coordinates for assembly, the 6th degree of freedom should be considered. A problem arises in this procedure the resultant stiffness in the 6th degree of freedom at this node will be zero. But this singularity of the stiffness matrix can be eliminated easily by merely replacing the zero diagonal by dummy stiffness.

  • PDF

The effect of carbon nanotubes agglomeration on vibrational response of thick functionally graded sandwich plates

  • Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.24 no.6
    • /
    • pp.711-726
    • /
    • 2017
  • In the present work, by considering the agglomeration effect of single-walled carbon nanotubes, free vibration characteristics of functionally graded (FG) nanocomposite sandwich plates resting on Pasternak foundation are presented. The volume fractions of randomly oriented agglomerated single-walled carbon nanotubes (SWCNTs) are assumed to be graded in the thickness direction. To determine the effect of CNT agglomeration on the elastic properties of CNT-reinforced composites, a two-parameter micromechanical model of agglomeration is employed. In this research work, an equivalent continuum model based on the Eshelby-Mori-Tanaka approach is employed to estimate the effective constitutive law of the elastic isotropic medium (matrix) with oriented straight CNTs. The 2-D generalized differential quadrature method (GDQM) as an efficient and accurate numerical tool is used to discretize the equations of motion and to implement the various boundary conditions. The proposed rectangular plates have two opposite edges simply supported, while all possible combinations of free, simply supported and clamped boundary conditions are applied to the other two edges. The benefit of using the considered power-law distribution is to illustrate and present useful results arising from symmetric and asymmetric profiles. The effects of two-parameter elastic foundation modulus, geometrical and material parameters together with the boundary conditions on the frequency parameters of the laminated FG nanocomposite plates are investigated. It is shown that the natural frequencies of structure are seriously affected by the influence of CNTs agglomeration. This study serves as a benchmark for assessing the validity of numerical methods or two-dimensional theories used to analysis of laminated plates.

Free vibration analysis of sandwich cylindrical panel composed of graphene nanoplatelets reinforcement core integrated with Piezoelectric Face-sheets

  • Khashayar Arshadi;Mohammad Arefi
    • Steel and Composite Structures
    • /
    • v.50 no.1
    • /
    • pp.63-75
    • /
    • 2024
  • In this paper, the modified couple stress theory (MCST) and first order shear deformation theory (FSDT) are employed to investigate the free vibration and bending analyses of a three-layered micro-shell sandwiched by piezoelectric layers subjected to an applied voltage and reinforced graphene nanoplatelets (GPLs) under external and internal pressure. The micro-shell is resting on an elastic foundation modeled as Pasternak model. The mixture's rule and Halpin-Tsai model are utilized to compute the effective mechanical properties. By applying Hamilton's principle, the motion equations and associated boundary conditions are derived. Static/ dynamic results are obtained using Navier's method. The results are validated with the previously published works. The numerical results are presented to study and discuss the influences of various parameters on the natural frequencies and deflection of the micro-shell, such as applied voltage, thickness of the piezoelectric layer to radius, length to radius ratio, volume fraction and various distribution pattern of the GPLs, thickness-to-length scale parameter, and foundation coefficients for the both external and internal pressure. The main novelty of this work is simultaneous effect of graphene nanoplatelets as reinforcement and piezoelectric layers on the bending and vibration characteristics of the sandwich micro shell.