• Title/Summary/Keyword: Reinforced foundation

Search Result 425, Processing Time 0.03 seconds

Propagation of elastic waves in thermally affected embedded carbon-nanotube-reinforced composite beams via various shear deformation plate theories

  • Ebrahimi, Farzad;Rostami, Pooya
    • Structural Engineering and Mechanics
    • /
    • v.66 no.4
    • /
    • pp.495-504
    • /
    • 2018
  • The current study is dedicated to study the thermal effects of wave propagation in beams, reinforced by carbon nanotubes (CNT). Beams, made up of carbon nanotube reinforced composite (CNTRC) are the future materials in various high tech industries. Herein a Winkler elastic foundation is assumed in order to make the model more realistic. Mostly, CNTs are pervaded in cross section of beam, in various models. So, it is tried to use four of the most profitable reconstructions. The homogenization of elastic and thermal properties such as density, Yong's module, Poisson's ratio and shear module of CNTRC beam, had been done by the demotic rule of mixture to homogenize, which gives appropriate traits in such settlements. To make this investigation, a perfect one, various shear deformation theories had been utilized to show the applicability of this theories, in contrast to their theoretical face. The reigning equation had been derived by extended Hamilton principle and the culminant equation solved analytically by scattering relations for propagation of wave in solid bodies. Results had been verified by preceding studies. It is anticipated that current results can be applicable in future studies.

Verification Studies for Field Peformance of Micropiling (성능검증을 위한 마이크로파일 현장 시험시공 및 재하시험)

  • Goo, Jeong-Min;Lee, Ki-Hwan;Cho, Young-Jun;Choi, Chang-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.368-375
    • /
    • 2009
  • This paper describes field installation and load test results performed for three types of micropiles in the process of developing a new micropiling method. Field tests were performed for two conventional types(i.e., micropile reinforced with steel bar and gravity grouting, micropile reinforced with steel bar and steel casing and gravity grouting) and a proposed type(i.e., micropile reinforced with hollow steel pipe wrapped with geotextile-pack and pressurized grouting). The load test results subjected to axial compression and tension and lateral loading conditions are described in this paper. The micropiles were exposed in the air in order to verify the installation quality and curing condition of grouting material via ground excavation. Axial compression and tension test results indicate that the new micropile type provide at least 40% higher bearing capacity than that of conventional types. Based on the examination of exposed piles, it is induced that the proposed method, packed micropile, provides better interlocking between grouts and surrounding soils and increases higher frictional resistance comparing to conventional types.

  • PDF

Problem of Evaluation Methods on the Wall Facing-Geosynthetics Connection Strength and Its Improvement (전면 벽체-보강재 연결강도 평가방법의 문제점 및 개선 방향)

  • Hong, Ki-Kwon;Shin, Ju-Oek;Han, Jung-Geun;Cho, Sam-Deok;Lee, Kwang-Wu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.184-195
    • /
    • 2008
  • The use of geosynthetics for the reinforced earth wall system has been increasing rapidly for a number of years. The connection strength between wall facing and geosynthetics should be evaluated in the design of geosynthetics. However, the connection strength is not often evaluate, exactly, and it causes problems such as deformation of the wall facing, local failure of the reinforced earth wall system, conservative design and so on. Therefore, the connection strength in the design of geosynthetics should be applied evaluation result by reasonable method. This study is evaluated connection strength using the typical design method, NCMA(1997) and FHWA(1996), in the field case. Then the results compared with the evaluation results of connection strength, which is suggested by Soong & Koener(1997). The analysis results confirmed that the connection strength for the design of geosynthetics should be evaluate using reasonable method with considering various factor, such as safety factor, installation and importance of construction.

  • PDF

Vibration of axially moving 3-phase CNTFPC plate resting on orthotropic foundation

  • Arani, Ali Ghorbanpour;Haghparast, Elham;Zarei, Hassan Baba Akbar
    • Structural Engineering and Mechanics
    • /
    • v.57 no.1
    • /
    • pp.105-126
    • /
    • 2016
  • In the present study, modelling and vibration control of axially moving laminated Carbon nanotubes/fiber/polymer composite (CNTFPC) plate under initial tension are investigated. Orthotropic visco-Pasternak foundation is developed to consider the influences of orthotropy angle, damping coefficient, normal and shear modulus. The governing equations of the laminated CNTFPC plates are derived based on new form of first-order shear deformation plate theory (FSDT) which is simpler than the conventional one due to reducing the number of unknowns and governing equations, and significantly, it does not require a shear correction factor. Halpin-Tsai model is utilized to evaluate the material properties of two-phase composite consist of uniformly distributed and randomly oriented CNTs through the epoxy resin matrix. Afterwards, the structural properties of CNT reinforced polymer matrix which is assumed as a new matrix and then reinforced with E-Glass fiber are calculated by fiber micromechanics approach. Employing Hamilton's principle, the equations of motion are obtained and solved by Hybrid analytical numerical method. Results indicate that the critical speed of moving laminated CNTFPC plate can be improved by adding appropriate values of CNTs. These findings can be used in design and manufacturing of marine vessels and aircrafts.

Seismic vulnerability of reinforced concrete building structures founded on an XPS layer

  • Koren, David;Kilar, Vojko
    • Earthquakes and Structures
    • /
    • v.10 no.4
    • /
    • pp.939-963
    • /
    • 2016
  • According to the new directives about the rational and efficient use of energy, thermal bridges in buildings have to be avoided, and the thermal insulation (TI) layer should run without interruptions all around the building - even under its foundations. The paper deals with the seismic response of multi-storeyed reinforced concrete (RC) frame building structures founded on an extruded polystyrene (XPS) layer placed beneath the foundation slab. The purpose of the paper is to elucidate the problem of buildings founded on a TI layer from the seismic resistance point of view, to assess the seismic behaviour of such buildings, and to search for the critical parameters which can affect the structural and XPS layer response. Nonlinear dynamic and static analyses were performed, and the seismic response of fixed-base (FB) and thermally insulated (TI) variants of nonlinear RC building models were compared. Soil-structure interaction was also taken into account for different types of soil. The results showed that the use of a TI layer beneath the foundation slab of a superstructure generally induces a higher peak response compared to that of a corresponding system without TI beneath the foundation slab. In the case of stiff structures located on firm soil, amplification of the response might be substantial and could result in exceedance of the superstructure's moment-rotation plastic hinge capacities or allowable lateral roof and interstorey drift displacements. In the case of heavier, slenderer, and higher buildings subjected to stronger seismic excitations, the overall response is governed by the rocking mode of oscillation, and as a consequence the compressive strength of the XPS could be insufficient. On the other hand, in the case of low-rise and light-weight buildings, the friction capacity between the layers of the applied TI foundation set might be exceeded so that sliding could occur.

Influence of modification in core building procedure on fracture strength and failure patterns of premolars restored with fiber post and composite core

  • Kim, Young-Hoi;Lee, Jong-Hyuk
    • The Journal of Advanced Prosthodontics
    • /
    • v.4 no.1
    • /
    • pp.37-42
    • /
    • 2012
  • PURPOSE. The influence of the modified process in the fiber-reinforced post and resin core foundation treatment on the fracture resistance and failure pattern of premolar was tested in this study. MATERIALS AND METHODS. Thirty-six human mandibular premolars were divided into 4 groups (n = 9). In group DCT, the quartz fibre post (D.T. Light-post) was cemented with resin cement (DUO-LINK) and a core foundation was formed with composite resin (LIGHT-CORE). In group DMO and DMT, resin cement (DUO-LINK) was used for post (D.T. Lightpost) cementation and core foundation; in group DMO, these procedures were performed simultaneously in one step, while DMT group was accomplished in separated two steps. In group LCT, the glass fiber post (LuxaPost) cementation and core foundation was accomplished with composite resin (LuxaCore-Dual) in separated procedures. Tooth were prepared with 2 mm ferrule and restored with nickel-chromium crowns. A static loading test was carried out and loads were applied to the buccal surface of the buccal cusp at a 45 degree inclination to the long axis of the tooth until failure occurred. The data were analyzed with MANOVA (${\alpha}$= .05). The failure pattern was observed and classified as either favorable (allowing repair) or unfavorable (not allowing repair). RESULTS. The mean fracture strength was highest in group DCT followed in descending order by groups DMO, DMT, and LCT. However, there were no significant differences in fracture strength between the groups. A higher prevalence of favorable fractures was detected in group DMT but there were no significant differences between the groups. CONCLUSION. The change of post or core foundation method does not appear to influence the fracture strength and failure patterns.

Nonlinear Seismic Analysis Method of Reinforced Concrete Buildings Including Their Pile Foundations (말뚝기초를 포함한 철근콘크리트 건물의 비선형 지진해석법에 관한 연구)

  • 이강석;이원호;류해상
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.9-20
    • /
    • 2003
  • At present, the information on the foundation-structure interaction is lacking. As a result, the seismic performance evaluation of buildings seldom considers the effect of the foundation performance on the building responses. Recent earthquakes such as the 1993 Hokkaido Nansei-oki Earthquake(M=7.8), the 1994 Northridge Earthquake(M=6.7), the 1995 Hyogoken-Nambu Earthquake(M=7.2), and the 1999 Chi-Chi Earthquake (M=7.6) have shown that building damages are significantly affected by the degree of damage sustained by the building foundation and the interaction between the building and the foundation. This paper presents a nonlinear seismic analysis method for the seismic performance evaluation of reinforced concrete buildings which considers the pile foundation-structure interaction. The proposed method is applied to an actual building which was damaged during the 1993 Hokkaido Nansei-oki Earthquake. The result reveal that the method is able to predict the performance of the building.

Analgesis of Clearly Reinforced Soil Wall Behavior by Model Test (모형시험에 의한 점성토 보강토벽의 거동분석)

  • 이용안;이재열;김유성
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.11c
    • /
    • pp.85-94
    • /
    • 1999
  • Reinforced Soil Wall has several merits comparing with conventional retaining wall. The conventional method has the limit of wall height, ununiform settlement of the foundation ground, quality assurance of the embankment body, shortening of construction period, economical construction and so on. Basis of previous mentioned things reinforced soil wall is the substitutional method of conventional retaining wall and its necessity is continuously increasing. The embanking material used in reinforced soil wall is generally limited such as a good quality sandy soil, and in many case constructors have to transfer such a good embanking material from far away to construction site. As a result, they would pressed by time and economy. If poor soils could be used embanking material, for example, clayey soil produced in-situ by cutting and excavation, the economical merit of reinforced soil wall would be increased more and more. Likewise, a lot of study about laboratory experimental behavior of reinforced soil wall using a good quality soil is being performed, but is rare study about clayey soil containing much volume of fine particle relatively in korea. In this study, the authors investigated behavior of the geosynthetic reinforced and unreinforced soil walls using clayey soil as embanking material in view of horizontal movement of walls, bearing capacity and reinforcement stress.

  • PDF

Development of Design Method of Disconnected Piled Raft Foundation System (기초분리말뚝 공법의 설계기법 개발)

  • Choi, Jung-In;Min, Ki-Hoon;Kim, Sung-Ho;Kwon, Oh-Sung;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.691-699
    • /
    • 2008
  • In the design of a foundation, settlement of the foundation may exceed allowable design criteria even with a competent bearing stratum. In such a case, a piled-raft foundation system may be adopted using piles as settlement reducing component. In this paper, Disconnected Piled Raft Foundation (DPRF) system, which installs disconnected piles underneath the raft and uses the piles as ground reinforcements, is studied as a cost effective design method against the classical piled-raft foundation system. To this end, large size loading tests were carried out on weathered ground changing area replacement ratio and length of piles. The results indicated that the settlement of the reinforced ground was reduced by 34~87% and the allowable bearing pressure increased by 70% on average from those of the unreinforced original ground, respectively. The correlating formula between the area replacement ratio and the load bearing ratio of piles were derived from the test results and numerical analysis. From the correlation, a design method determining the size and the quantity of the disconnected piles to enhance the bearing capacity of original ground to the desired value was proposed based on one inch settlement criteria.

  • PDF

Allowable Bearing Capacity of Shallow Foundation on Geogrid-Reinforced Sand (Geogrid로 보강된 사질토층에 정방향 얕은 기초의 허용지지력에 관한 연구)

  • Yeo, Byung Chul;Shin, Bang Woong;Das, Braja M.;Puri, Vijay K.
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.335-341
    • /
    • 1994
  • Laboratory model test results for bearing capacity of a square shallow foundation supported by a sand layer reinforced with layers of geogrid have been presented. Use of geogrids provides an economical and time efficient method for improving load-settlement, and strength characteristics of weak soils. Especially the geogrid reinforced soil will be necessary in the case of foundations supporting machines, embankments for railroads, and foundations of structures in earthquake-prone areas. Based on the present model test results, the bearing capacity ratio (BCR) with respect to the ultimate bearing capacity (UBC), at levels of limited settlement of the shallow foundation. has been determined. Also, it appears that significant improvement in the UBC of medium sands can be achieved by reinforcing elements which shows promise for future work.

  • PDF