• Title/Summary/Keyword: Reinforced concrete beam-column

Search Result 450, Processing Time 0.023 seconds

Main factors determining the shear behavior of interior RC beam-column joints

  • Costa, Ricardo;Providencia, Paulo
    • Structural Engineering and Mechanics
    • /
    • v.76 no.3
    • /
    • pp.337-354
    • /
    • 2020
  • Reinforced concrete beam-column (RCBC) joints of laterally loaded unbraced frames are sometimes controlled by their shear behavior. This behavior relies on multiple and interdependent complex mechanisms. There are already several studies on the influence of some parameters on the shear strength of reinforced concrete joints. However, there are no studies methodically tackling all the most relevant parameters and quantifying their influence on the overall joint behavior, not just on its shear strength. Hence, considering the prohibitive cost of a comprehensive parametric experimental investigation, a nonlinear finite element analysis (NLFEA) was undertaken to identify the key factors affecting the shear behavior of such joints and quantify their influence. The paper presents and discusses the models employed in this NLFEA and the procedure used to deduce the joint behavior from the NLFEA results. Three alternative, or complementary, quantities related to shear are considered when comparing results, namely, the maximum shear stress supported by the joint, the secant shear stiffness at maximum shear stress and the secant shear stiffness in service conditions. Depending on which of these is considered, the lower or higher the relevance of each of the six parameters investigated: transverse reinforcement in the joint, intermediate longitudinal bars and diagonal bars in the column, concrete strength, column axial load and confining elements in transverse direction.

An Experimental Study on the Behavior of Exterior Beam-Column Joints with Steel Fiber Reinforced High Strength Concrete Subjected to Cyclic Loads (반복하중을 받는 강섬유보강 고강도 콘크리트 외측보-기둥 접합부의 거동에 관한 실험적 연구)

  • 한형섭;김명성;박인철;김윤일
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.565-568
    • /
    • 1999
  • The objective of this study is to investigate the hysteretic behaviors of exterior beam-column joints with high strength concrete (f'c≒1000kg/$\textrm{cm}^2$) subjected to cyclic loads. Four exterior subassemblages scaled down about 60% were tested, whose variables were with/without shear reinforcements and with/without slab and spandrel beams. Hoop bars and hooked steel fibers were used as the shear reinforcements. The test results showed that using hooked steel fiber reinforced concrete with volume ratio 1.5% at beam-column joints was very effective to resist shear stress due to cyclic loads.

  • PDF

A Study on Seismic Performance for CFT Square Column-to-Beam Connections Reinforced with Asymmetric Lower Diaphragms (이형 하부다이아프램으로 보강된 각형 CFT 기둥-보 접합부의 내진성능에 관한 연구)

  • 최성모;윤여상;김요숙;김진호
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.163-171
    • /
    • 2003
  • Most of existing beam-to-column connections are reinforced symmetrically because of reverse action cause by earthquake but in the weak-earthquake region like Korea connections reinforced asymmetrically can be used. Specially, the connections between CFT(Concrete Filled Tube) column and H-shape beam can be applied by simplified lower diaphragm. The tensile capacity of Combined Cross Diaphragm for upper reinforcing was tested by simple tension test and four types for lower reinforcing; Combined Cross, None, Horizontal T-bar and Vertical Plate were tested by ANSI/AISC SSPEC 2002 loading program. Horizontal T-bar and stud bolts in vertical flat bar transmit tensile stress from bottom flange of beam to filled concrete. All test specimens were satisfied 0.01 radian of inelastic rotational requirement in ordinary moment frame of AISC seismic provision. As the results of parametric studies, simplified lower diaphragms demonstrated an outstanding strength, stiffness and plastic deformation capacity to use sufficient seismic performance in the field.

  • PDF

Seismic behavior evaluation of exterior beam-column joints with headed or hooked bars using nonlinear finite element analysis

  • Rajagopal, S.;Prabavathy, S.;Kang, Thomas H.K.
    • Earthquakes and Structures
    • /
    • v.7 no.5
    • /
    • pp.861-875
    • /
    • 2014
  • This paper studies the response of seismic behavior of reinforced concrete exterior beam-column joints under reversal loading with different anchorages and joint core details. The joint core was detailed without much confinement (group-I) and/or with proposed X-cross bars in the core (group-II). The beam longitudinal reinforcement's anchorages were designed as per ACI 352 (headed bars), ACI 318 (conventional $90^{\circ}$ bent hooks) and IS 456 ($90^{\circ}$ bent hooks with extended tails). The nonlinear finite element analysis response of the beam-column joints was studied, along with initial and progressive cracks up to failure. The experimental and analytical results were compared and presented in this paper to make more scientific conclusions.

Finite element analysis of RC beam-column joints with high-strength materials

  • Noguchi, H.;Kashiwazaki, T.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.5
    • /
    • pp.625-634
    • /
    • 1997
  • Reinforced concrete (RC) interior beam-column joints with high-strength materials: concrete compressive strength of 100 MPa and the yield strength of longitudinal bars of 685 MPa, were analyzed using three-dimensional (3-D) nonlinear finite element method (FEM). Specimen OKJ3 of joint shear failure type was a plane interior joint, and Specimen 12 of beam flexural failure type was a 3-D interior joint with transverse beams. Though the analytical initial stiffness was higher than experimental one, the analytical results gave a good agreement with the test results on the maximum story shear forces, the failure mode.

Application of 상Strut-and-Tie상 Model for the Detailing of Beam-Column Joints (보-기둥 접합부의 배근상세를 위한 Strut-and-Tie Model)

  • 강원호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.04a
    • /
    • pp.53-58
    • /
    • 1994
  • Beam-column joints of the skeleton structure can be classified as geometrical D-region, where the assumption of Bernoulli is not applicable. For the detailing of D-region in concrete structure, "Strut-and-Tie' Model is a very powerful tool, which has been widely used by practical engineers. This paper shows how the methodology of Strut-and-Tie Model can be applied for the various cases of beam-column joints. We can find this mechanical model does not give only an appropriate answer to the given problem but also a better insight to the structral behavior of beam-column joints.

  • PDF

Seismic design of beam-column joints in RC moment resisting frames - Review of codes

  • Uma, S.R.;Jain, Sudhir K.
    • Structural Engineering and Mechanics
    • /
    • v.23 no.5
    • /
    • pp.579-597
    • /
    • 2006
  • The behaviour of reinforced concrete moment resisting frame structures in recent earthquakes all over the world has highlighted the consequences of poor performance of beam column joints. Large amount of research carried out to understand the complex mechanisms and safe behaviour of beam column joints has gone into code recommendations. This paper presents critical review of recommendations of well established codes regarding design and detailing aspects of beam column joints. The codes of practice considered are ACI 318M-02, NZS 3101: Part 1:1995 and the Eurocode 8 of EN 1998-1:2003. All three codes aim to satisfy the bond and shear requirements within the joint. It is observed that ACI 318M-02 requires smaller column depth as compared to the other two codes based on the anchorage conditions. NZS 3101:1995 and EN 1998-1:2003 consider the shear stress level to obtain the required stirrup reinforcement whereas ACI 318M-02 provides stirrup reinforcement to retain the axial load capacity of column by confinement. Significant factors influencing the design of beam-column joints are identified and the effect of their variations on design parameters is compared. The variation in the requirements of shear reinforcement is substantial among the three codes.

Seismic behavior of steel and sisal fiber reinforced beam-column joint under cyclic loading

  • S.M. Kavitha;G. Venkatesan;Siva Avudaiappan;Chunwei Zhang
    • Structural Engineering and Mechanics
    • /
    • v.88 no.5
    • /
    • pp.481-492
    • /
    • 2023
  • The past earthquakes revealed the importance of the design of moment-resisting reinforced concrete framed structures with ductile behavior. Due to seismic activity, failures in framed structures are widespread in beam-column joints. Hence, the joints must be designed to possess sufficient strength and stiffness. This paper investigates the effects of fibers on the ductility of hybrid fiber reinforced self-compacting concrete (HFRSCC) when subjected to seismic actions; overcoming bottlenecks at the beam-column joints has been studied by adding low modulus sisal fiber and high modulus steel fiber. For this, the optimized dose of hooked end steel fiber content (1.5%) was kept constant, and the sisal fiber content was varied at the rate of 0.1%, up to 0.3%. The seismic performance parameters, such as load-displacement behavior, ductility, energy absorption capacity, stiffness degradation, and energy dissipation capacity, were studied. The ductility factor and the cumulative energy dissipation capacity of the hybrid fiber (steel fiber, 1.5% and sisal fiber, 0.2%) added beam-column joint specimen is 100% and 121% greater than the control specimen, respectively. And also the stiffness of the hybrid fiber reinforced specimen is 100% higher than the control specimen. Thus, the test results showed that adding hybrid fibers instead of mono fibers could significantly enhance the seismic performance parameters. Therefore, the hybrid fiber reinforced concrete with 1.5% steel and 0.2% sisal fiber can be effectively used to design structures in seismic-prone areas.

The Experimental study on the behavior of precast Girder-Infilled Steel Tube Column joint (프리캐스트 보와 충전형 강관 기둥 접합부의 거동에 관한 실험적 연구)

  • 정재우;박성무
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.317-322
    • /
    • 1995
  • This study is to examine the usefulness in using precast girder-infilled steel tube column in reinforced concrete structures through the analysis of the test results, in order to develope the new composite structural system using precast girder-Infilled steel tube column, The variables of specimen are strength of concrete, the numble of hoops, the form of beam-column The variables of specimen are strength of concrete, the number of hoops, the form of beam-column joints. By raising strength of concrete and incresing number of hoops in beam-column joint, it becomes clear to take similar structure capacity to monolithic structures.

  • PDF

Behavior of High Strength Reinforced Concrete Wide Beam-Column Joint with Slab (슬래브가 있는 고강도 철근 콘크리트 넓은 보-기둥 접합부의 거동)

  • 최종인;안종문;신성우;박성식;이범식;양지수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.493-498
    • /
    • 2002
  • An experimental investigation was conducted to study the behavior of high-strength RC wide beam-column joints with slab subjected to reversed cyclic loads under constant axial load. Six half scale interior wide beam-column assemblies representing a portion of a frame subjected to simulated seismic loading were tested, including three specimens without slab and three specimens with slab. The primary variables were compressive strength of concrete( $f_{ck}$ =240, 500kgf/c $m^2$), the ratio of the column-to-beam flexural capacity( $M_{r}$=2$\Sigma$ $M_{c}$$\Sigma$ $M_{b}$ ; 0.77-2.26), extended length of the column concrete($\ell$$_{d}$ ; 0, 9.6, 30cm), ratio of the column-to-beam width(b/H ; 1.54, 1.67). Test results are shown that (1) the behavior of specimen using high-strength concrete satisfied the required minimum ductile capacity according to increase the compressive strength, (2). In the design of the wide beam-column joints, one should be consider the effects of slab stiffness which is ignored in the current design code and practice.ice.e.e.

  • PDF