• 제목/요약/키워드: Rehabilitation Robot System

검색결과 82건 처리시간 0.03초

자동 사료 급이 로봇과 초음파 장애물 분류 시스템 (Autonomous Feeding Robot and its Ultrasonic Obstacle Classification System)

  • 김승기;이용찬;안성수;이연정
    • 전기학회논문지
    • /
    • 제67권8호
    • /
    • pp.1089-1098
    • /
    • 2018
  • In this paper, we propose an autonomous feeding robot and its obstacle classification system using ultrasonic sensors to secure the driving safety of the robot and efficient feeding operation. The developed feeding robot is verified by operation experiments in a cattle shed. In the proposed classification algorithm, not only the maximum amplitude of the ultrasonic echo signal but also two gradients of the signal and the variation of amplitude are considered as the feature parameters for object classification. The experimental results show the efficiency of the proposed classification method based on the Support Vector Machine, which is able to classify objects or obstacles such as a human, a cow, a fence and a wall.

뇌졸중 환자의 손 고정장치 제어를 위한 다축 힘/모멘트센서 개발 (Development of Multi-Axis Force/Moment Sensor for Stroke Patient's Hand Fixing System Control)

  • 김현민;윤정원;김갑순
    • 센서학회지
    • /
    • 제20권5호
    • /
    • pp.351-356
    • /
    • 2011
  • Stroke patients should exercise for the rehabilitation of their fingers, because they can't use their hand and fingers. Their hand and fingers are fixed on the hand fixing system for rehabilitation exercise of them. But the hands clenched the fist of stroke patients are difficult to fix on it. In order to fix the hands and fingers, their palms are pressed with pressing bars and are controlled by reference force. The fixing system must have a five-axis force/moment sensor to force control. In this paper, the five-axis force/moment sensor was developed for the hand fixing system of finger-rehabilitation exercising system. The structure of the five-axis force/moment sensor was modeled, and designed using finite element method(FEM). And it was fabricated with strain-gages, then, its characteristic test was carried out. As a result, the maximum interference error is less than 2.43 %.

외골격 보행보조로봇 개발을 위한 정상인의 계단보행특성 분석 (Analysis of stair walking characteristics for the development of exoskeletal walking assist robot)

  • 조현석;장윤희;류제청;문무성;김창부
    • 재활복지공학회논문지
    • /
    • 제6권2호
    • /
    • pp.15-22
    • /
    • 2012
  • 외골격 보행보조로봇은 로봇 시스템을 인체에 직접 착용하는 형태이므로 기구적인 측면에서는 인체 근골격 구조에 최적화된 메커니즘으로 구성되어야 하며, 제어적인 측면에서는 근골격계의 손상을 일으킬 수 있는 로봇의 부적합한 거동을 예방할 수 있는 안전장치를 갖추어야 한다. 외골격 보행보조로봇을 개발하기 위해서는 보행이나 근골격계의 거동특성에 대한 이해 및 분석이 필요하다. 본 연구에서는 최적화된 로봇시스템 설계를 위하여 구동장치의 관절력과 동력 용량을 예측하였으며 몇 가지 보행동작에 대한.관절거동특성을 파악할 수 있는 자료를 획득하였다. 평지보행을 제외한 나타나는 주요한 동작으로는 계단오르고 내리기, 안기, 서기, 경사면 걷기 등이 있다. 본 연구에서는 경사면 걷기를 제외한 모든 동작에 대한 동작 실험을 수행하고 분석하였다.

  • PDF

Biosign Recognition based on the Soft Computing Techniques with application to a Rehab -type Robot

  • Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.29.2-29
    • /
    • 2001
  • For the design of human-centered systems in which a human and machine such as a robot form a human-in system, human-friendly interaction/interface is essential. Human-friendly interaction is possible when the system is capable of recognizing human biosigns such as5 EMG Signal, hand gesture and facial expressions so the some humanintention and/or emotion can be inferred and is used as a proper feedback signal. In the talk, we report our experiences of applying the Soft computing techniques including Fuzzy, ANN, GA and rho rough set theory for efficiently recognizing various biosigns and for effective inference. More specifically, we first observe characteristics of various forms of biosigns and propose a new way of extracting feature set for such signals. Then we show a standardized procedure of getting an inferred intention or emotion from the signals. Finally, we present examples of application for our model of rehabilitation robot named.

  • PDF

요부 안정화를 위한 복대형 입는 로봇 개발 (Development of Brace-type Wearable Robot for Lumbar Stabilization)

  • 김주완;심재훈;김기원;정선근;박재흥
    • 로봇학회논문지
    • /
    • 제18권2호
    • /
    • pp.189-196
    • /
    • 2023
  • An abdominal brace is a recommended treatment for patients with lumbar spinal disorders. However, due to the nature of the static brace, it uniformly compresses the lumbar region, which can weaken the lumbar muscles or create a psychological dependence that worsens the condition of the spine when worn for an extended period of time. Due to these issues, doctors limit the wearing time when prescribing it to patients. In this paper, we propose a device that can dynamically provide abdominal pressure and support according to the lumbar motion. The proposed device is a wearable robot in the form of a brace, with actuators and a driving unit mounted on the brace. To enhance wearability and reduce the weight of the device, worm gears actuator and a multi-pulley mechanism were adopted. Based on the spinal motion of the wearer measured by the Inertia measurement unit sensors, the drives wire by driving pulley, which provide tension to the multi-pulley mechanism on both sides, dynamically tightening or loosening the device. Finally, the device can dynamically provide abdominal pressure and support. We describe the hardware and system configuration of the device and demonstrate its potential through basic control experiments.

뇌졸중 환자에게 적용한 로봇보행 재활훈련의 효과: 메타분석 (The Effects of Robot-Assisted Gait Training for the Patient With Post Stroke: A Meta-Analysis)

  • 박소연
    • 한국전문물리치료학회지
    • /
    • 제22권2호
    • /
    • pp.30-40
    • /
    • 2015
  • Robot-assisted rehabilitation therapy has been used to increase physical function in post-stroke patients. The aim of this meta-analysis was to identify whether robot-assisted gait training can improve patients' functional abilities. A comprehensive search was performed of PubMed, Cochrane Central Register of Controlled Trials (CENTRAL), Physiotherapy Evidence Database (PEDro), Academic Search Premier (ASP), ScienceDirect, Korean Studies Information Service System (KISS), Research Information Sharing Service (RISS), Korea National Library, and the Korean Medical Database up to April, 2014. Fifteen eligible studies researched the effects of robot-assisted gait training to a control group. All outcome measures were classified by International Classification of Functioning, Disability, and Health (ICF) domains (body function and structures, activity, and participation) and were pooled for calculating the effect size. The overall effect size of the robot-assisted gait training was .356 [95% confidence interval (CI): .186~.526]. When the effect was compared by the type of electromechanical robot, Gait Trainer (GT) (.471, 95% CI: .320~.621) showed more effective than Lokomat (.169, 95% CI: .063~.275). In addition, acute stroke patients showed more improvement than others. Although robot-assisted gait training may improve function, but there is no scientific evidence about the appropriate treatment time for one session or the appropriate duration of treatment. Additional researchers are needed to include more well-designed trials in order to resolve these uncertainties.

A Novel Powered Gait Orthosis using Pneumatic Muscle Actuator

  • Kang, Sung-Jae;Ryu, Jei-Cheong;Moon, In-Hyuk;Ryu, Jae-Wook;Mun, Mu-Seung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1500-1503
    • /
    • 2003
  • One of the main goals in the rehabilitation of SCI patients is to enable the patient to stand and walk themselves. We are developing high-thrust powered gait orthosis(PGO) that use air muscle actuator(shadow robot Co., UK) to be assisted gait and rehabilitation purposes of them. We made of PD controller and measured hip joint angle by its load and the pressure to control air muscle of PGO. As a results, maximum flexion angle of hip joint is $20^{\circ}$, and angular velocity is 30.4${\pm}2.5^{\circ}/sec$, and then delay time of system was average 0.62${\pm}$0.03s. As the hip flexion angle and the pelvic angle is decreased during the gait with PGO, the patient can walk faster. By using the PGO, the energy consumption can also be decreased. therefore, the proposed PGO can be a very useful assitive device for the paraplegics to walk.

  • PDF

Wireless EMG-based Human-Computer Interface for Persons with Disability

  • Lee, Myoung-Joon;Moon, In-Hyuk;Kim, Sin-Ki;Mun, Mu-Seong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1485-1488
    • /
    • 2003
  • This paper proposes a wireless EMG-based human-computer interface (HCI) for persons with disabilities. For the HCI, four interaction commands are defined by combining three elevation motions of shoulders such as left, right and both elevations. The motions are recognized by comparing EMG signals on the Levator scapulae muscles with double thresholds. A real-time EMG processing hardware is implemented for acquiring EMG signals and recognizing the motions. To achieve real-time processing, filters such as high- and low-pass filter and band-pass and -rejection filter, and a full rectifier and a mean absolute value circuit are embedded on a board with a high speed microprocessor. The recognized results are transferred to a wireless client system such as a mobile robot via a Bluetooth module. From experimental results using the implemented real-time EMG processing hardware, the proposed wireless EMG-based HCI is feasible for the disabled.

  • PDF

척수마비 재활훈련용 이족보행 RGO 로봇의 Dynam ic PLS 생체역학적 특성분석 <응력해석과 FEM을 중심으로> (Analysis of a Dynamic PLS of the Biped Walking RGO-Robot for a Trainning of Rehabilitation)

  • 김명회;장대진;박창일;박영필
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.136-141
    • /
    • 2002
  • This paper presents a design and a control of a biped walking RGO-robot and dynamic walking simulation for this system. The biped walking RGO-robot is distinguished from other one by which has a very light-weight and a new AGO type with servo motors. The gait of a biped walking RGO-robot depends on the constrains of mechanical kinematics and initial posture. The stability of dynamic walking is investigated by ZMP(Zero Moment Point) of the biped walking RGO-robot. It is designed according to a human wear type and is able to accomodate itself to human environments. The joints of each leg are adopted with a good kinematic characteristics. To test of the analysis of joint kinematic properties, we did the strain stress analysis of dynamic PLS and the study of FEM with a dynamic PLS. It will be expect that the spinal cord injury patients are able to train effectively with a biped walking AGO-robot.

  • PDF