• 제목/요약/키워드: Regulator Motor

검색결과 120건 처리시간 0.027초

대용량 유도기 기동 특성 모델링 및 전략적 기동 방법에 관한 연구 (Modeling and Strategic Startup Scheme for Large-Scaled Induction Motors)

  • 정원욱;신동열;이학주;윤기갑
    • 한국산학기술학회논문지
    • /
    • 제8권4호
    • /
    • pp.748-757
    • /
    • 2007
  • 본 논문은 대용량 유도전동기가 기동할 때 발생하는 큰 돌입전류로 인해 PCC(Point of Common Coupling)에 심한 전압 강하가 발생하게 되어 기동에 실패하는 문제를 해결하기 위해 대상 유도전동기의 기동 특성과 배전계통을 모델링하고 시뮬레이션을 수행함으로써 유도기 기동시에 전압저하 현상을 해석하였다. 문제가 되는 유도전동기는 2500KVA 용량의 펌프용 농형 유도전동기로 리액터 기동법을 채용하고 있다. 2500KVA 유도전동기 한대의 기동에는 문제가 없으나 기동 완료 후 PCC 전압이 다소 떨어진다. 하지만 추가로 동일 용량의 유도전동기가 기동하게 되면 PCC의 심한 전압강하로 기동에 실패하게 되는 문제가 발생하였다. 이러한 문제 해결을 위해 본 논문에서는 실제 기기의 기동시 토크-속도 곡선을 이용한 유도전동기의 기동 특성을 정확히 모델링하고 시뮬레이션을 수행하여 두 대의 대용량 유도전동기가 순차적으로 기동에 성공할 수 있는 적절한 전압보상 방안을 제안하였다. 본 논문에서 논의되는 대용량 유도전동기는 한국수자원공사의 취수장에서 운전되고 있으며 대상 유도전동기 및 배전계통은 PSCAD/EMTDC 소프트웨어를 사용하여 모델링 및 시뮬레이션을 수행하였다.

  • PDF

High Performance of Self Scheduled Linear Parameter Varying Control with Flux Observer of Induction Motor

  • Khamari, Dalila;Makouf, Abdesslam;Drid, Said;Chrifi-Alaoui, Larbi
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권5호
    • /
    • pp.1202-1211
    • /
    • 2013
  • This paper deals with a robust controller for an induction motor (IM) which is represented as a linear parameter varying systems. To do so linear matrix inequality (LMI) based approach and robust Lyapunov feedback are associated. This approach is related to the fact that the synthesis of a linear parameter varying (LPV) feedback controller for the inner loop take into account rotor resistance and mechanical speed as varying parameter. An LPV flux observer is also synthesized to estimate rotor flux providing reference to cited above regulator. The induction motor is described as a polytopic LPV system because of speed and rotor resistance affine dependence. Their values can be estimated on line during systems operations. The simulation and experimental results largely confirm the effectiveness of the proposed control.

THE DYNAMICAL PERFORMANCE OF CONTROLLED FLYWHEELING DUAL CONVERTER-FED DC MOTOR DRIVES WITH SIMULATANEOUS CONTROL AND FUZZY PI CONTROLLER

  • Soltani, Jafar;Sojdei, Jamshid
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 Proceedings ICPE 98 1998 International Conference on Power Electronics
    • /
    • pp.414-419
    • /
    • 1998
  • This paper describes the dynamical performance of a four-quadrant circulation current mode control of dc motor drive, using the controlled flywleeling technique, a four-quadrant closed-loop control drive with an inner current control loop and a speed fuzzy PI regulator is designed. The obtained computer simulation results of a dc motor drive below and above the base speed are demonstrated. These result show that compare to a conventional dual-converter-fed dc motor drive with simultaneous control, the overal system performance has been improved and also, agood stability and robstness has been achieved.

  • PDF

적응 적분바이너리 관측기를 이용한 매입형 영구자석 동기전동기의 센서리스 속도제어 (A Sensorless Speed Control of Interior Permanent Magnet Synchronous Motor using an Adaptive Integral Binary Observer)

  • 강형석;김영석
    • 전기학회논문지
    • /
    • 제56권1호
    • /
    • pp.71-80
    • /
    • 2007
  • A control approach for the sensorless speed control of interior permanent magnet synchronous motor(IPMSM) based on adaptive integral the binary is proposed. With a main loop regulator and an auxiliary loop regulator, the binary observer has a property of the chattering alleviation in the constant boundary layer. However, the width of the constant boundary limits the steady state estimation accuracy and robustness. In order to improve the steady state performance of the binary observer, the binary observer is formed by adding extra integral augmented switching the hyperplane equation. By mean of integral characteristics, the rotor speed can be finely estimated and utilized for a sensorless speed controller for IPMSM. The proposed adaptive integral binary observer applies an adaptive scheme, because the parameters of the dynamic equations such as the machine inertia or the viscosity friction coefficient is not well known and these values can be easily changed generally during normal operation. Therefore, the observer can overcome the problem caused by using the dynamic equations, and the rotor speed estimation is constructed by using the Lyapunov function. The experimental results of the proposed algorithm are presented to demonstrate the effectiveness of the approach.

적분 바이너리 관측기와 퍼지 제어기를 이용한 IPMSM 센서리스 속도제어 (The Sensorless Speed Control of an Interior Permanent Magnet Synchronous Motor using an Adaptive Integral Binary Observer and a Fuzzy Controller)

  • 이형;;정우택;김영석;신재화
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 B
    • /
    • pp.925-926
    • /
    • 2006
  • This paper presents a sensorless speed control of an interior permanent magnet synchronous motor using an adaptive integral binary observer and fuzzy logic controller. In view of composition with a main loop regulator and an auxiliary loop regulator, the binary observer has a property of the chattering alleviation in the constant boundary layer. However, the steady state estimation accuracy and robustness are dependent upon the width of the constant boundary. In order to improve the steady state performance of the binary observer, the binary observer is formed by adding extra integral dynamics to the switching hyperplane equation. Also, because the conventional fixed gain PI controller are very sensitive to step change of command speed, parameter variations and load disturbance, the fuzzy logic controller is used to compensate a fixed gain PI controller. Therefore, a gain PI is fixed and the IPMSM is drived at another speed region. The effectiveness of the proposed the adaptive integral observer and the fuzzy logic controller are confirmed by experimental results.

  • PDF

회전자 위치 추정 PI 제어기를 이용한 비돌극형 PMSM 센서리스 제어 (Sensorless Control of Non-salient PMSM using Rotor Position Tracking PI Controller)

  • 이종건;석줄기;이동춘;김흥근
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권11호
    • /
    • pp.664-670
    • /
    • 2004
  • This paper presents a new velocity estimation strategy of a non-salient permanent magnet synchronous motor (PMSM) drive without high frequency signal injection or special PWM pattern. This approach is based on the d-axis current regulator output voltage of the drive system that has the information of rotor position error. The rotor velocity can be estimated through a rotor position tracking PI controller that controls the position error to zero. For zero and low speed operation, PI controller gains of rotor position tracking controller have a variable structure according to the estimated rotor velocity. In order to boost the bandwidth of PI controller around zero speed, a loop recovery technique is applied to the control system. The proposed method only requires the flux linkage of permanent magnet and is insensitive to the parameter estimation error and variation. The designers can easily determine the possible operating range with a desired bandwidth and perform the vector control even at low speeds. The experimental results show the satisfactory operation of the proposed sensorless algorithm under rated load conditions.

영구자석 동기전동기의 퍼지 속도제어기 및 퍼지 각가속도 관측기 설계 (Design of a Fuzzy Speed Controller and a Fuzzy Angular Acceleration Observer for a Permanent Magnet Synchronous Motor)

  • 정진우;최영식
    • 조명전기설비학회논문지
    • /
    • 제25권2호
    • /
    • pp.103-112
    • /
    • 2011
  • This paper proposes a new fuzzy speed controller for the precise speed control of a permanent magnet synchronous motor(PMSM). The proposed control system needs the information of the angular acceleration instead of the load torque, so the third-order fuzzy acceleration observer estimates it. Moreover, the LMI conditions are derived for the existence of the fuzzy acceleration observer and fuzzy speed controller, and the gain matrices of the observer and controller are obtained. It is analytically proven that the proposed observer-based fuzzy speed regulator is exponentially stable. To evaluate the performance of the proposed control algorithm, experimental results as well as simulation results are provided under the conditions of motor parameter and load torque variations. Finally, it is clearly confirmed that the proposed control method can accurately control the speed of a PMSM.

히스테리시스 전류제어기 구동 BLDCM의 전류(轉流)현상 해석 (Analysis of the Commutation Phenomenon in Brushless DC Motor with Hysteresis Current Regulator)

  • 강석주;김광헌;원종수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1992년도 하계학술대회 논문집 B
    • /
    • pp.685-688
    • /
    • 1992
  • This paper studies the commutation phenomenon in the Brushless DC Motor with the trapezoidal BEMF waveform. It is shown that the torque ripple am the speed ripple due to the phase commutation depend on driving sytem, operating speed am load condition. The effects of resistance and BEMF flat width on torque ripple are considered. Speed - torque characteristics of the motor is presented considering the phase commutation. Uncommutating current control method can attenuate the torque ripple in the low speed region, and also minimize the switching loss am switching frequency. In this paper, the commutation phenomena are verified by analytical formulation and simulation.

  • PDF

출력선가동자의 구조변경에 의해 향상된 전압제어 특성을 갖는 SVR의 제작 (Fabrication of the SVR with the Improved Voltage Regulating Characteristics by the Structural Modification of the Output Wire Moving Shaft)

  • 홍성훈;강문성
    • 제어로봇시스템학회논문지
    • /
    • 제8권10호
    • /
    • pp.867-873
    • /
    • 2002
  • We have designed and fabricated the slidacs type automatic voltage regulator(SVR) that is able to control the output voltage continuously according to load variation. Especially, the frictions between the surface of contact of the slidacs coils and the output wire moving shaft arc reduced by modifying the mechanical configuration of surface of contact of slidacs from the conventional sliding one into the proposed rotary one composed of cylindrical bearing. Thus, SVR using cylindrical bearing proposed in this study has less noise than the conventional one owing to the reduction of friction, and its breakdown ratio caused by the abrasion of contact materials is reduced as well. We have designed U motor driving circuit for controlling the output wire moving shaft, and introduced the digital control method using the pulse width modulation(PWM) output for controlling DC motor.

영구자석 동기전동기의 벡터 제어를 위한 퍼지 각가속도 관측기 기반의 퍼지 속도제어기 (Fuzzy Speed Regulator based on a Fuzzy Acceleration Observer for Vector Control of Permanent Magnet Synchronous Motors)

  • 정진우
    • 전기학회논문지
    • /
    • 제60권2호
    • /
    • pp.330-337
    • /
    • 2011
  • This paper presents a new fuzzy speed controller based on a fuzzy angular acceleration observer to realize a robust speed control of permanent magnet synchronous motors(PMSM). The proposed speed controller needs the information of the angular acceleration, thus the first-order fuzzy acceleration observer is designed. The LMI existence condition is given for the proposed fuzzy speed controller, and the gain matrices of the controller are calculated. It is verified that the augmented control system consisting of the fuzzy speed controller and the fuzzy acceleration observer is mathematically stable. To validate the effectiveness of the proposed acceleration observer-based fuzzy speed controller, the simulation and experimental results are shown under motor parameter variations. It is definitely proven that the proposed control scheme can precisely track the speed of a permanent magnet synchronous motor.