• Title/Summary/Keyword: Regulating Structure

Search Result 168, Processing Time 0.026 seconds

Development and Wearability Evaluation of All-Fabric Integrated Smart Jacket for a Temperature-regulating System Based on User Experience Design (사용자 경험 중심의 섬유일체형 온도조절 스마트재킷 개발과 착용성 평가)

  • Kim, Sareum;Roh, Jung-Sim;Lee, Eun Young
    • Fashion & Textile Research Journal
    • /
    • v.18 no.3
    • /
    • pp.363-373
    • /
    • 2016
  • This study aims to develop an all-fabric integrated smart jacket in order to create a temperature-regulating system based on a user experience design. For this research, previous research technologies of a textile switch interface and a temperature-regulating system were utilized and a unifying technology for the all-fabric integrated smart jacket was developed which can provide the appropriate temperature environments to the human body. A self-heating textile was applied at the areas of the back and hood in the final tested jacket, and an embroidery circuit was developed in the form of a rectangle in the back and in both ears of the hood, taking into account the pattern of the jacket part where it was be applied and the embroidery production method. The textile switch interface was designed in a three-layer structure: an embroidery circuit line in a conductive yarn, an interval material, and a conductive sensing material, and it was made to work with the input and output sensors through the multiple input method. After the all-fabric integrated smart jacket was produced according to the pattern, all of the textile band lines for transmission were gathered and connected with a miniature module for controlling temperature and then integrated into the inside of the left chest pocket of the jacket. After the users put on this jacket, they were asked to assess the wearing satisfaction. Most of them reported a very low level of irritation and discomfort and said that the jacket was as comfortable as everyday clothing.

Smad4 Mediated TGF-β/BMP Signaling in Tooth Formation Using Smad4 Conditional Knockout Mouse (치아 발생과정에서 Smad4의 역할)

  • Yoon, Chi-Young;Baek, Jin-A;Cho, Eui-Sic;Ko, Seung-O
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.35 no.2
    • /
    • pp.73-81
    • /
    • 2013
  • Purpose: Smad4 is a central mediator for transforming growth factor-${\beta}$/bone morphogenetic protein ($TGF-{\beta}/BMP$) signals, which are involved in regulating cranial neural crest cell formation, migration, proliferation, and fate determination. Accumulated evidences indicate that $TGF-{\beta}/BMP$ signaling plays key roles in the early tooth morphogenesis. However, their roles in the late tooth formation, such as cellular differentiation and matrix formation are not clearly understood. The objective of this study is to understand the roles of Smad4 in vivo during enamel and dentin formation through tissue-specific inactivation of Smad4. Methods: We generated and analyzed mice with dental epithelium-specific inactivation of the Smad4 gene (K14-Cre:$Smad4^{fl/fl}$) and dental mesenchyme-specific inactivation of Smad4 gene (Osr2Ires-Cre:$Smad4^{fl/fl}$). Results: In the tooth germs of K14-Cre:$Smad4^{fl/fl}$, ameloblast differentiation was not detectable in inner enamel epithelial cells, however, dentin-like structure was formed in dental mesenchymal cells. In the tooth germs of Osr2Ires-Cre:$Smad4^{fl/fl}$ mice, ameloblasts were normally differentiated from inner enamel epithelial cells. Interestingly, we found that bone-like structures, with cellular inclusion, were formed in the dentin region of Osr2Ires-Cre:$Smad4^{fl/fl}$ mice. Conclusion: Taken together, our study demonstrates that Smad4 plays a crucial role in regulating ameloblast and odontoblast differentiation, as well as in regulating epithelial-mesenchymal interactions during tooth development.

As a Modulator, Multitasking Roles of SIRT1 in Respiratory Diseases

  • Yunxin Zhou;Fan Zhang;Junying Ding
    • IMMUNE NETWORK
    • /
    • v.22 no.3
    • /
    • pp.21.1-21.21
    • /
    • 2022
  • As far the current severe coronavirus disease 2019 (COVID-19), respiratory disease is still the biggest threat to human health. In addition, infectious respiratory diseases are particularly prominent. In addition to killing and clearing the infection pathogen directly, regulating the immune responses against the pathogens is also an important therapeutic modality. Sirtuins belong to NAD+-dependent class III histone deacetylases. Among 7 types of sirtuins, silent information regulator type-1 (SIRT1) played a multitasking role in modulating a wide range of physiological processes, including oxidative stress, inflammation, cell apoptosis, autophagy, antibacterial and antiviral functions. It showed a critical effect in regulating immune responses by deacetylation modification, especially through high-mobility group box 1 (HMGB1), a core molecule regulating the immune system. SIRT1 was associated with many respiratory diseases, including COVID-19 infection, bacterial pneumonia, tuberculosis, and so on. Here, we reviewed the latest research progress regarding the effects of SIRT1 on immune system in respiratory diseases. First, the structure and catalytic characteristics of SIRT1 were introduced. Next, the roles of SIRT1, and the mechanisms underlying the immune regulatory effect through HMGB1, as well as the specific activators/inhibitors of SIRT1, were elaborated. Finally, the multitasking roles of SIRT1 in several respiratory diseases were discussed separately. Taken together, this review implied that SIRT1 could serve as a promising specific therapeutic target for the treatment of respiratory diseases.

Versatile Roles of Microbes and Small RNAs in Rice and Planthopper Interactions

  • Mansour, Abdelaziz;Mannaa, Mohamed;Hewedy, Omar;Ali, Mostafa G.;Jung, Hyejung;Seo, Young-Su
    • The Plant Pathology Journal
    • /
    • v.38 no.5
    • /
    • pp.432-448
    • /
    • 2022
  • Planthopper infestation in rice causes direct and indirect damage through feeding and viral transmission. Host microbes and small RNAs (sRNAs) play essential roles in regulating biological processes, such as metabolism, development, immunity, and stress responses in eukaryotic organisms, including plants and insects. Recently, advanced metagenomic approaches have facilitated investigations on microbial diversity and its function in insects and plants, highlighting the significance of microbiota in sustaining host life and regulating their interactions with the environment. Recent research has also suggested significant roles for sRNA-regulated genes during rice-planthopper interactions. The response and behavior of the rice plant to planthopper feeding are determined by changes in the host transcriptome, which might be regulated by sRNAs. In addition, the roles of microbial symbionts and sRNAs in the host response to viral infection are complex and involve defense-related changes in the host transcriptomic profile. This review reviews the structure and potential functions of microbes and sRNAs in rice and the associated planthopper species. In addition, the involvement of the microbiota and sRNAs in the rice-planthopper-virus interactions during planthopper infestation and viral infection are discussed.

Effect of raft and pile stiffness on seismic response of soil-piled raft-structure system

  • Saha, Rajib;Dutta, Sekhar C.;Haldar, Sumanta
    • Structural Engineering and Mechanics
    • /
    • v.55 no.1
    • /
    • pp.161-189
    • /
    • 2015
  • Soil-pile raft-structure interaction is recognized as a significant phenomenon which influences the seismic behaviour of structures. Soil structure interaction (SSI) has been extensively used to analyze the response of superstructure and piled raft through various modelling and analysis techniques. Major drawback of previous study is that overall interaction among entire soil-pile raft-superstructure system considering highlighting the change in design forces of various components in structure has not been explicitly addressed. A recent study addressed this issue in a broad sense, exhibiting the possibility of increase in pile shear due to SSI. However, in this context, relative stiffness of raft and that of pile with respect to soil and length of pile plays an important role in regulating this effect. In this paper, effect of relative stiffness of piled raft and soil along with other parameters is studied using a simplified model incorporating pile-soil raft and superstructure interaction in very soft, soft and moderately stiff soil. It is observed that pile head shear may significantly increase if the relative stiffness of raft and pile increases and furthermore stiffer pile group has a stronger effect. Outcome of this study may provide insight towards the rational seismic design of piles.

On the primary productivity in the southern sea of korea (한국남해역(韓國南海域)의 일차생산력(一次生産力))

  • CHUNG, CHANG-SOO;YANG, DONG-BEOM
    • 한국해양학회지
    • /
    • v.26 no.3
    • /
    • pp.242-254
    • /
    • 1991
  • Southern sea of Korea was investigated for primary productivity during four scientific cruises of Korea Ocean research and Development Institute. Frontal structure appeared to be an important physical characteristic in enhancing the phytoplankton production in the study area. Relatively high productivity was occurred near the front between Tsushima Warm Current Water and Coastal Waters of China continent in March 1990 and in November 1989, and near the front between Tsushima Warm Current Water and Korean coastal Water in April 1989. In August 1988 high productive zone was limited to the tidal front off the southwestern coast of Korea. Nutrient supply related to the frontal structure might play a dominant role in increasing the primary productivity but mechanisms of nutrient enrichment are not clear. Average column productivity showed its maximum in April 1989 (1727 mgC/m$^2$/day). In the costal Waters of the china Continent incident light may be an important factor in regulating the regulating the phytoplankton production because of low light penetration rate resulting from high turbidity.

  • PDF

Correlation between Magnetic-field directions and intensity gradients in Orion A region

  • Hwang, Jihye;Kim, Jongsoo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.67.2-67.2
    • /
    • 2018
  • Magnetic fields play an important role in star-forming processes by regulating gravitational collapse. In filamentary structures of star-forming regions, magnetic fields are likely to be aligned with minor axes of filamentary molecular clouds because matter freely moves along magnetic field lines. Orion A region, one of the well-known high-mass star forming regions, has long filament structure. In order to study magnetic field directions with respect to the filamentary structure in Orion A, we have analyzed $850{\mu}m$ dust polarization observations obtained with the James Clerk Maxwell Telescope (JCMT). We found tight correlation of dust intensity gradients and magnetic field directions. It was estimated that 81% of magnetic field segments are aligned with density gradients within 40 degree. In conclusion, we confirmed most of magnetic field segments are perpendicular to the major axis of the filament in Orion A.

  • PDF

Theoretical Protein Structure Prediction of Glucagon-like Peptide 2 Receptor Using Homology Modelling

  • Nagarajan, Santhosh Kumar;Madhavan, Thirumurthy
    • Journal of Integrative Natural Science
    • /
    • v.10 no.3
    • /
    • pp.119-124
    • /
    • 2017
  • Glucagon-like peptide 2 receptor, a GPCR, binds with the glucagon-like peptide, GLP-2 and regulates various metabolic functions in the gastrointestinal tract. It plays an important role in the nutrient homeostasis related to nutrient assimilation by regulating mucosal epithelium. GLP-2 receptor affects the cellular response to external injury, by controlling the intestinal crypt cell proliferation. As they are therapeutically attractive towards diseases related with the gastrointestinal tract, it becomes essential to analyse their structural features to study the pathophysiology of the diseases. As the three dimensional structure of the protein is not available, in this study, we have performed the homology modelling of the receptor based on single- and multiple template modeling. The models were subjected to model validation and a reliable model based on the validation statistics was identified. The predicted model could be useful in studying the structural features of GLP-2 receptor and their role in various diseases related to them.

Effects of multiple MR dampers controlled by fuzzy-based strategies on structural vibration reduction

  • Wilson, Claudia Mara Dias
    • Structural Engineering and Mechanics
    • /
    • v.41 no.3
    • /
    • pp.349-363
    • /
    • 2012
  • Fuzzy logic based control has recently been proposed for regulating the properties of magnetorheological (MR) dampers in an effort to reduce vibrations of structures subjected to seismic excitations. So far, most studies showing the effectiveness of these algorithms have focused on the use of a single MR damper. Because multiple dampers would be needed in practical applications, this study aims to evaluate the effects of multiple individually tuned fuzzy-controlled MR dampers in reducing responses of a multi-degree-of-freedom structure subjected to seismic motions. Two different fuzzy-control algorithms are considered, a traditional controller where all parameters are kept constant, and a gain-scheduling control strategy. Different damper placement configurations are also considered, as are different numbers of MR dampers. To determine the robustness of the fuzzy controllers developed to changes in ground excitation, the structure selected is subjected to different earthquake records. Responses analyzed include peak and root mean square displacements, accelerations, and interstory drifts. Results obtained with the fuzzy-based control schemes are compared to passive control strategies.

Long arm octopus (Octopus minor) extract prevents eye injury caused by particulate matter exposure in zebrafish (Danio rerio) embryos

  • Thilini Ranasinghe;Seon-Heui Cha
    • Fisheries and Aquatic Sciences
    • /
    • v.27 no.2
    • /
    • pp.111-121
    • /
    • 2024
  • Particulate matter (PM) is a mixture of microscopic solid inhalable particles including airborne liquid droplets, and it is implicated with several diseases. The eye does not have a protective barrier among the human organs, consequently it get directly exposed to environmental substances such as PM. The scarcity of treatments for damage to the eyesight and the vision and eye structure being closely related to the structure and function of the central nervous system highlights the cruciality of novel therapeutics. In this study was conducted using in vivo zebrafish vertebrate model which is a useful model due to the conserved genes between human. We found that protective effect of Octopus minor extract against particulate matter-induced adverse effects on eye development in zebrafish (Danio rerio) embryos by regulating antioxidant and anti-inflammatory mRNA expression.