• Title/Summary/Keyword: Regulating Effect

Search Result 913, Processing Time 0.027 seconds

Modulatory Effect of Kaempferitrin, a 3,7-Diglycosylflavone, on the LPS-Mediated Up-regulation of Surface Co-stimulatory Molecules and CD29-Mediated Cell-cell Adhesion in Monocytic- and Macrophage-like Cells (활성화된 단핵구 및 대식세포의 항원제시기능에 대한 Kaempferitrin의 조절 효과)

  • Kim, Byung-Hun;Cho, Dong-Ha;Cho, Jae-Youl
    • YAKHAK HOEJI
    • /
    • v.51 no.6
    • /
    • pp.482-489
    • /
    • 2007
  • Kaempferitrin, isolated from Kenaf (Hibiscus cannabinus), was examined to evaluate its modulatory effects on antigen-presenting cell functions of macrophages/monocytes such as phagocytosis of foreign materials, up-regulation of costimulatory molecules (CD40, CD80 and CD86), adhesion molecule activation, and antigen processing and presentation. Kaempferitrin strongly blocked up-regulation of CD40, CD80 and CD86, but not pattern recognition receptor (PRR) (e.g., TLR2). It also suppressed functional activation of CD29 (${\beta}1$-integrins), as assessed by cell-cell adhesion assay, required for T cell-antigen-presenting cell (APC) interaction. Furthermore, this compound did not block a simple activation of CD29, as assessed by cell-fibronectin adhesion assay. However, the compound did not diminish phagocytic uptake, an initial step for antigen processing, and ROS generation in RAW264.7 cells. In particular, to understand molecular mechanism of kaempferitrin-mediated inhibition, the regulatory role of LPS-induced signaling events was examined using immunoblotting analysis. Interestingly, this compound dose dependently suppressed the phosphorylation of $I{\kappa}B{\alpha}$, Src, Akt and Syk, demonstrating that it can negatively modulate the activation of these signaling enzymes. Therefore, our data suggested that kaempferitrin may be involved in regulating APC function-relevant immune responses of macrophages and monocytes by regulating intracellular signaling.

Apigenin Inhibits Tumor Necrosis Factor-α-Induced Production and Gene Expression of Mucin through Regulating Nuclear Factor-Kappa B Signaling Pathway in Airway Epithelial Cells

  • Seo, Hyo-Seok;Sikder, Mohamed Asaduzzaman;Lee, Hyun Jae;Ryu, Jiho;Lee, Choong Jae
    • Biomolecules & Therapeutics
    • /
    • v.22 no.6
    • /
    • pp.525-531
    • /
    • 2014
  • In the present study, we investigated whether apigenin significantly affects tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$)-induced production and gene expression of MUC5AC mucin in airway epithelial cells. Confluent NCI-H292 cells were pretreated with apigenin for 30 min and then stimulated with TNF-${\alpha}$ for 24 h or the indicated periods. The MUC5AC mucin gene expression and mucin protein production were measured by reverse transcription - polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA), respectively. Apigenin significantly inhibited MUC5AC mucin production and down-regulated MUC5AC gene expression induced by TNF-${\alpha}$ in NCI-H292 cells. To elucidate the action mechanism of apigenin, effect of apigenin on TNF-${\alpha}$-induced nuclear factor kappa B (NF-${\kappa}B$) signaling pathway was also investigated by western blot analysis. Apigenin inhibited NF-${\kappa}B$ activation induced by TNF-${\alpha}$. Inhibition of inhibitory kappa B kinase (IKK) by apigenin led to the suppression of inhibitory kappa B alpha ($I{\kappa}B{\alpha}$) phosphorylation and degradation, p65 nuclear translocation. This, in turn, led to the down-regulation of MUC5AC protein production in NCI-H292 cells. Apigenin also has an influence on upstream signaling of IKK because it inhibited the expression of adaptor protein, receptor interacting protein 1 (RIP1). These results suggest that apigenin can regulate the production and gene expression of mucin through regulating NF-${\kappa}B$ signaling pathway in airway epithelial cells.

Effects of α-lipoic acid on LPS-induced neuroinflammation and NLRP3 inflammasome activation through the regulation of BV-2 microglial cells activation

  • Kim, Su Min;Ha, Ji Sun;Han, A Reum;Cho, Sung-Woo;Yang, Seung-Ju
    • BMB Reports
    • /
    • v.52 no.10
    • /
    • pp.613-618
    • /
    • 2019
  • Microglial cells are known as the main immune cells in the central nervous system, both regulating its immune response and maintaining its homeostasis. Furthermore, the antioxidant ${\alpha}-lipoic$ acid (LA) is a recognized therapeutic drug for diabetes because it can easily invade the blood-brain barrier. This study investigated the effect of ${\alpha}-LA$ on the inflammatory response in lipopolysaccharide (LPS)-treated BV-2 microglial cells. Our results revealed that ${\alpha}-LA$ significantly attenuated several inflammatory responses in BV-2 microglial cells, including pro-inflammatory cytokines, such as tumor necrosis $factor-{\alpha}$ and interleukin (IL)-6, and other cytotoxic molecules, such as nitric oxide and reactive oxygen species. In addition, ${\alpha}-LA$ inhibited the LPS-induced phosphorylation of ERK and p38 and its pharmacological properties were facilitated via the inhibition of the nuclear factor kappa B signaling pathway. Moreover, ${\alpha}-LA$ suppressed the activation of NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasomes, multiprotein complexes consisting of NLRP3 and caspase-1, which are involved in the innate immune response. Finally, ${\alpha}-LA$ decreased the genes accountable for the M1 phenotype, $IL-1{\beta}$ and ICAM1, whereas it increased the genes responsible for the M2 phenotype, MRC1 and ARG1. These findings suggest that ${\alpha}-LA$ alleviates the neuroinflammatory response by regulating microglial polarization.

Studies of the effects and mechanisms of ginsenoside Re and Rk3 on myelosuppression induced by cyclophosphamide

  • Han, Jiahong;Xia, Jing;Zhang, Lianxue;Cai, Enbo;Zhao, Yan;Fei, Xuan;Jia, Xiaohuan;Yang, He;Liu, Shuangli
    • Journal of Ginseng Research
    • /
    • v.43 no.4
    • /
    • pp.618-624
    • /
    • 2019
  • Background: Ginsenoside Re (Re) is one of the major components of Panax ginseng Meyer. Ginsenoside $Rk_3$ ($Rk_3$) is a secondary metabolite of Re. The aim of this study was to investigate and compare the effects and underlying mechanisms of Re and $Rk_3$ on cyclophosphamide-induced myelosuppression. Methods: The mice myelosuppression model was established by intraperitoneal (i.p.) injection of cyclophosphamide. Peripheral blood cells, bone marrow nucleated cells, and colony yield of hematopoietic progenitor cells in vitro were counted. The levels of erythropoietin, thrombopoietin, and granulocyte macrophage colony-stimulating factor in plasma were measured by enzyme-linked immunosorbent assay. Bone marrow cell cycle was performed by flow cytometry. The expression of apoptotic protein bcl-2, bax, and caspase-3 was detected by Western blotting. Results: Both Re and $Rk_3$ could improve peripheral blood cells, bone marrow nucleated cell counts, thymus index, and spleen index. Furthermore, they could enhance the yield of colonies cultured in vitro and make the levels of granulocyte macrophage colony-stimulating factor, erythropoietin, and thrombopoietin normal, reduce the ratio of $G_0/G_1$ phase cells, and increase the proliferation index. Finally, Re and $Rk_3$ could upregulate the expression of bcl-2, whereas they could downregulate the expression of bax and caspase-3. Conclusion: Re and $Rk_3$ could improve the hematopoietic function of myelosuppressed mice. The effect of $Rk_3$ was superior to that of Re at any dose. Regulating the levels of cytokines, promoting cells enter the normal cell cycle, regulating the balance of bcl-2/bax, and inhibiting the expression of caspase-3 may be the effects of Re and $Rk_3$ on myelosuppression.

LINC01272 Suppressed Cell Multiplication and Induced Apoptosis Via Regulating MiR-7-5p/CRLS1 Axis in Lung Cancer

  • Ma, Xuan;Liu, Yang;Tian, Hao;Zhang, Bo;Wang, Meiling;Gao, Xia
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.7
    • /
    • pp.921-932
    • /
    • 2021
  • LINC01272 is a long non-coding RNA (lncRNA) that has been considered as a biomarker for many diseases including lung squamous cell carcinoma. Here, we investigated the function and mechanism of LINC01272 on lung cancer (LC). The differential expression of LINC01272 in LC and normal samples was analyzed by GEPIA based on the data from TCGA-LUAD database, as survival prognosis was analyzed through Kaplan-Meier Plotter. LINC01272 overexpression plasmid and miR-7-5p mimic were transfected into A549 and PC-9 cells. LINC01272, miR-7-5p and cardiolipin synthase 1 (CRLS1) mRNA expression was measured by quantitative reverse transcription-polymerase chain reaction. Cell viability was detected through MTT assay. Cell multiplication was evaluated by cell formation assay. Cell apoptosis was assessed through flow cytometry assay. Through bioinformatics, the target miRNA of LINC01272 and downstream genes of miR-7-5p were predicted. The targeting relationship was tested by dual luciferase reporter analysis. CRLS1, B-cell lymphoma-2 (Bcl-2), BCL2-associated X (Bax) and cleaved caspase-3 protein levels were detected through western blot. LINC01272 was downregulated in LC and low LINC01272 expression had poor prognosis. In A549 and PC-9 cells, LINC01272 inhibited cell viability and multiplication and induced apoptosis. LINC01272 negatively regulated miR-7-5p and CRLS1 was a target of miR-7-5p. MiR-7-5p reversed the effect of LINC01272 on viability, multiplication, apoptosis and expression of miR-7-5p and CRLS1 as well as apoptosis-related factors (Bcl-2, Bax and cleaved caspase-3). LINC01272 suppressed cell multiplication and induced apoptosis via regulating the miR-7-5p/CRLS1 axis in LC.

The Effects of Middle School Students' Reading Methods and Self-Efficacy on Career Maturity (중학생의 독서방법, 자기효능감이 진로성숙에 미치는 영향)

  • Chun, Jeeyeon;Kim, Giyeong
    • Journal of the Korean Society for information Management
    • /
    • v.38 no.2
    • /
    • pp.129-152
    • /
    • 2021
  • Regardless of previous educational attempts in youth career education, there are not specific methods for reading to improve career maturity yet. This study aims to identify the reading method based on cognitive aspect which impacts career maturity and the mediation effect of self-efficacy in this process. This study tries to understand the roles of reading by applying the various reading methods suggested in the 2015 Revised National Curriculum. Data was collected through interviews and statistical analysis from a survey completed by middle school students. Findings showed that critical reading affected the decisiveness as well as the confidence of career maturity. Also, emotional reading and creative reading influenced the preparation of career maturity. Critical reading impacted all subvariables of self-efficacy - confidence, self-regulating efficacy, and task difficulty preference. Findings also showed that emotional reading affected self-regulating efficacy. Ultimately, the confidence of self-efficacy partly mediated critical reading and decisiveness. This study contributes to guiding reading instructions for practitioners and school curriculums to develop career maturity and self-efficacy.

SMAD4 Controls Cancer Cell Metabolism by Regulating Methylmalonic Aciduria Cobalamin Deficiency (cbl) B Type

  • Song, Kyoung;Lee, Hun Seok;Jia, Lina;Chelakkot, Chaithanya;Rajasekaran, Nirmal;Shin, Young Kee
    • Molecules and Cells
    • /
    • v.45 no.6
    • /
    • pp.413-424
    • /
    • 2022
  • Suppressor of mothers against decapentaplegic homolog (SMAD) 4 is a pluripotent signaling mediator that regulates myriad cellular functions, including cell growth, cell division, angiogenesis, apoptosis, cell invasion, and metastasis, through transforming growth factor β (TGF-β)-dependent and -independent pathways. SMAD4 is a critical modulator in signal transduction and functions primarily as a transcription factor or cofactor. Apart from being a DNA-binding factor, the additional SMAD4 mechanisms in tumor suppression remain elusive. We previously identified methyl malonyl aciduria cobalamin deficiency B type (MMAB) as a critical SMAD4 binding protein using a proto array analysis. This study confirmed the interaction between SMAD4 and MMAB using bimolecular fluorescence complementation (BiFC) assay, proximity ligation assay (PLA), and conventional immunoprecipitation. We found that transient SMAD4 overexpression down-regulates MMAB expression via a proteasome-dependent pathway. SMAD4-MMAB interaction was independent of TGF-β signaling. Finally, we determined the effect of MMAB downregulation on cancer cells. siRNA-mediated knockdown of MMAB affected cancer cell metabolism in HeLa cells by decreasing ATP production and glucose consumption as well as inducing apoptosis. These findings suggest that SMAD4 controls cancer cell metabolism by regulating MMAB.

Neuroprotective effect of Korean Red Ginseng against single prolonged stress-induced memory impairments and inflammation in the rat brain associated with BDNF expression

  • Lee, Bombi;Sur, Bongjun;Oh, Seikwan
    • Journal of Ginseng Research
    • /
    • v.46 no.3
    • /
    • pp.435-443
    • /
    • 2022
  • Background: Post-traumatic stress disorder (PTSD) is a psychiatric disease that develops following exposure to a traumatic event and is a stress-associated mental disorder characterized by an imbalance of neuroinflammation. Korean Red Ginseng (KRG) is the herbal supplement that is known to be involved in a variety of pharmacological activities. We aimed to investigate the effects of KRG on neuroinflammation as a potential mechanism involved in single prolonged stress (SPS) that negatively influences memory formation and consolidation and leads to cognitive and spatial impairment by regulating BDNF signaling, synaptic proteins, and the activation of NF-κB. Methods: We analyzed the cognitive and spatial memory, and inflammatory cytokine levels during the SPS procedure. SPS model rats were injected intraperitoneally with 20, 50, or 100 mg/kg/day KRG for 14 days. Results: KRG administration significantly attenuated the cognitive and spatial memory deficits, as well as the inflammatory reaction in the hippocampus associated with activation of NF-κB in the hippocampus induced by SPS. Moreover, the effects of KRG were equivalent to those exerted by paroxetine. In addition, KRG improved the expression of BDNF mRNA and the synaptic protein PSD-95 in the hippocampus. Taken together, these findings demonstrate that KRG exerts memory-improving actions by regulating anti-inflammatory activities and the NF-κB and neurotrophic pathway. Conclusion: Our findings suggest that KRG is a potential functional ingredient for protecting against memory deficits in mental diseases, such as PTSD.

Exosome-mediated lnc-ABCA12-3 promotes proliferation and glycolysis but inhibits apoptosis by regulating the toll-like receptor 4/nuclear factor kappa-B signaling pathway in esophageal squamous cell carcinoma

  • Junliang Ma;Yijun Luo;Yingjie Liu;Cheng Chen;Anping Chen;Lubiao Liang;Wenxiang Wang;Yongxiang Song
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.1
    • /
    • pp.61-73
    • /
    • 2023
  • Esophageal squamous cell carcinoma (ESCC) is a kind of malignant tumor with high incidence and mortality in the digestive system. The aim of this study is to explore the function of lnc-ABCA12-3 in the development of ESCC and its unique mechanisms. RT-PCR was applied to detect gene transcription levels in tissues or cell lines like TE-1, EC9706, and HEEC cells. Western blot was conducted to identify protein expression levels of mitochondrial apoptosis and toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NF-κB) signaling pathway. CCK-8 and EdU assays were carried out to measure cell proliferation, and cell apoptosis was examined by flow cytometry. ELISA was used for checking the changes in glycolysis-related indicators. Lnc-ABCA12-3 was highly expressed in ESCC tissues and cells, which preferred it to be a candidate target. The TE-1 and EC9706 cells proliferation and glycolysis were obviously inhibited with the downregulation of lnc-ABCA12-3, while apoptosis was promoted. TLR4 activator could largely reverse the apoptosis acceleration and relieved the proliferation and glycolysis suppression caused by lnc-ABCA12-3 downregulation. Moreover, the effect of lnc-ABCA12-3 on ESCC cells was actualized by activating the TLR4/NF-κB signaling pathway under the mediation of exosome. Taken together, the lnc-ABCA12-3 could promote the proliferation and glycolysis of ESCC, while repressing its apoptosis probably by regulating the TLR4/NF-κB signaling pathway under the mediation of exosome.

5-Hydroxytryptophan Reduces Levodopa-Induced Dyskinesia via Regulating AKT/mTOR/S6K and CREB/ΔFosB Signals in a Mouse Model of Parkinson's Disease

  • Yujin Choi;Eugene Huh;Seungmin Lee;Jin Hee Kim;Myoung Gyu Park;Seung-Yong Seo;Sun Yeou Kim;Myung Sook Oh
    • Biomolecules & Therapeutics
    • /
    • v.31 no.4
    • /
    • pp.402-410
    • /
    • 2023
  • Long-term administration of levodopa (L-DOPA) to patients with Parkinson's disease (PD) commonly results in involuntary dyskinetic movements, as is known for L-DOPA-induced dyskinesia (LID). 5-Hydroxytryptophan (5-HTP) has recently been shown to alleviate LID; however, no biochemical alterations to aberrant excitatory conditions have been revealed yet. In the present study, we aimed to confirm its anti-dyskinetic effect and to discover the unknown molecular mechanisms of action of 5-HTP in LID. We made an LID-induced mouse model through chronic L-DOPA treatment to 6-hydroxydopamine-induced hemi-parkinsonian mice and then administered 5-HTP 60 mg/kg for 15 days orally to LID-induced mice. In addition, we performed behavioral tests and analyzed the histological alterations in the lesioned part of the striatum (ST). Our results showed that 5-HTP significantly suppressed all types of dyskinetic movements (axial, limb, orolingual and locomotive) and its effects were similar to those of amantadine, the only approved drug by Food and Drug Administration. Moreover, 5-HTP did not affect the efficacy of L-DOPA on PD motor manifestations. From a molecular perspective, 5-HTP treatment significantly decreased phosphorylated CREB and ΔFosB expression, commonly known as downstream factors, increased in LID conditions. Furthermore, we found that the effects of 5-HTP were not mediated by dopamine1 receptor (D1)/DARPP32/ERK signaling, but regulated by AKT/mTOR/S6K signaling, which showed different mechanisms with amantadine in the denervated ST. Taken together, 5-HTP alleviates LID by regulating the hyperactivated striatal AKT/mTOR/S6K and CREB/ΔFosB signaling.