DOI QR코드

DOI QR Code

SMAD4 Controls Cancer Cell Metabolism by Regulating Methylmalonic Aciduria Cobalamin Deficiency (cbl) B Type

  • Song, Kyoung (College of Pharmacy, Duksung Women's University) ;
  • Lee, Hun Seok (Laboratory of Molecular Pathology and Cancer Genomics, Research Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University) ;
  • Jia, Lina (Department of Pharmacology, Shenyang Pharmaceutical University) ;
  • Chelakkot, Chaithanya (Bio-MAX Institute, Seoul National University) ;
  • Rajasekaran, Nirmal (Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University) ;
  • Shin, Young Kee (Laboratory of Molecular Pathology and Cancer Genomics, Research Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University)
  • Received : 2022.04.15
  • Accepted : 2022.04.28
  • Published : 2022.06.30

Abstract

Suppressor of mothers against decapentaplegic homolog (SMAD) 4 is a pluripotent signaling mediator that regulates myriad cellular functions, including cell growth, cell division, angiogenesis, apoptosis, cell invasion, and metastasis, through transforming growth factor β (TGF-β)-dependent and -independent pathways. SMAD4 is a critical modulator in signal transduction and functions primarily as a transcription factor or cofactor. Apart from being a DNA-binding factor, the additional SMAD4 mechanisms in tumor suppression remain elusive. We previously identified methyl malonyl aciduria cobalamin deficiency B type (MMAB) as a critical SMAD4 binding protein using a proto array analysis. This study confirmed the interaction between SMAD4 and MMAB using bimolecular fluorescence complementation (BiFC) assay, proximity ligation assay (PLA), and conventional immunoprecipitation. We found that transient SMAD4 overexpression down-regulates MMAB expression via a proteasome-dependent pathway. SMAD4-MMAB interaction was independent of TGF-β signaling. Finally, we determined the effect of MMAB downregulation on cancer cells. siRNA-mediated knockdown of MMAB affected cancer cell metabolism in HeLa cells by decreasing ATP production and glucose consumption as well as inducing apoptosis. These findings suggest that SMAD4 controls cancer cell metabolism by regulating MMAB.

Keywords

Acknowledgement

Authors would like to extend their thanks to Professor Chang-Deng Hu (Department of Medicinal Chemistry and Molecular Pharmacology and Purdue Cancer Center, Purdue University, West Lafayette, IN) for kindly gifting them the BiFC constructs using fragments derived from newly engineered fluorescent protein-Venus.

References

  1. Allen, E.L., Ulanet, D.B., Pirman, D., Mahoney, C.E., Coco, J., Si, Y., Chen, Y., Huang, L., Ren, J., Choe, S., et al. (2016). Differential aspartate usage identifies a subset of cancer cells particularly dependent on OGDH. Cell Rep. 17, 876-890. https://doi.org/10.1016/j.celrep.2016.09.052
  2. Allendorph, G.P., Vale, W.W., and Choe, S. (2006). Structure of the ternary signaling complex of a TGF-beta superfamily member. Proc. Natl. Acad. Sci. U. S. A. 103, 7643-7648. https://doi.org/10.1073/pnas.0602558103
  3. Anderson, N.M., Mucka, P., Kern, J.G., and Feng, H. (2018). The emerging role and targetability of the TCA cycle in cancer metabolism. Protein Cell 9, 216-237. https://doi.org/10.1007/s13238-017-0451-1
  4. Anzmann, A.F., Pinto, S., Busa, V., Carlson, J., McRitchie, S., Sumner, S., Pandey, A., and Vernon, H.J. (2019). Multi-omics studies in cellular models of methylmalonic acidemia and propionic acidemia reveal dysregulation of serine metabolism. Biochim. Biophys. Acta Mol. Basis Dis. 1865, 165538. https://doi.org/10.1016/j.bbadis.2019.165538
  5. Bardeesy, N., Cheng, K.H., Berger, J.H., Chu, G.C., Pahler, J., Olson, P., Hezel, A.F., Horner, J., Lauwers, G.Y., Hanahan, D., et al. (2006). Smad4 is dispensable for normal pancreas development yet critical in progression and tumor biology of pancreas cancer. Genes Dev. 20, 3130-3146. https://doi.org/10.1101/gad.1478706
  6. Bartsch, D., Hahn, S.A., Danichevski, K.D., Ramaswamy, A., Bastian, D., Galehdari, H., Barth, P., Schmiegel, W., Simon, B., and Rothmund, M. (1999). Mutations of the DPC4/Smad4 gene in neuroendocrine pancreatic tumors. Oncogene 18, 2367-2371. https://doi.org/10.1038/sj/onc/1202585
  7. Batlle, E. and Massague, J. (2019). Transforming growth factor-beta signaling in immunity and cancer. Immunity 50, 924-940. https://doi.org/10.1016/j.immuni.2019.03.024
  8. Biondi, C.A., Das, D., Howell, M., Islam, A., Bikoff, E.K., Hill, C.S., and Robertson, E.J. (2007). Mice develop normally in the absence of Smad4 nucleocytoplasmic shuttling. Biochem. J. 404, 235-245. https://doi.org/10.1042/BJ20061830
  9. Blackford, A., Serrano, O.K., Wolfgang, C.L., Parmigiani, G., Jones, S., Zhang, X., Parsons, D.W., Lin, J.C., Leary, R.J., Eshleman, J.R., et al. (2009). SMAD4 gene mutations are associated with poor prognosis in pancreatic cancer. Clin. Cancer Res. 15, 4674-4679. https://doi.org/10.1158/1078-0432.ccr-09-0227
  10. Cen, H., Mao, F., Aronchik, I., Fuentes, R.J., and Firestone, G.L. (2008). DEVD-NucView488: a novel class of enzyme substrates for real-time detection of caspase-3 activity in live cells. FASEB J. 22, 2243-2252. https://doi.org/10.1096/fj.07-099234
  11. Chan, R., Mascarenhas, L., Boles, R.G., Kerkar, N., Genyk, Y., and Venkatramani, R. (2015). Hepatoblastoma in a patient with methylmalonic aciduria. Am. J. Med. Genet. A 167A, 635-638.
  12. Dang, L., White, D.W., Gross, S., Bennett, B.D., Bittinger, M.A., Driggers, E.M., Fantin, V.R., Jang, H.G., Jin, S., Keenan, M.C., et al. (2009). Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462, 739-744. https://doi.org/10.1038/nature08617
  13. David, C.J. and Massague, J. (2018). Contextual determinants of TGFbeta action in development, immunity and cancer. Nat. Rev. Mol. Cell Biol. 19, 419-435. https://doi.org/10.1038/s41580-018-0007-0
  14. Depeint, F., Bruce, W.R., Shangari, N., Mehta, R., and O'Brien, P.J. (2006). Mitochondrial function and toxicity: role of B vitamins on the one-carbon transfer pathways. Chem. Biol. Interact. 163, 113-132. https://doi.org/10.1016/j.cbi.2006.05.010
  15. Dobson, C.M., Wai, T., Leclerc, D., Kadir, H., Narang, M., Lerner-Ellis, J.P., Hudson, T.J., Rosenblatt, D.S., and Gravel, R.A. (2002). Identification of the gene responsible for the cblB complementation group of vitamin B12-dependent methylmalonic aciduria. Hum. Mol. Genet. 11, 3361-3369. https://doi.org/10.1093/hmg/11.26.3361
  16. Fehling, C., Nilsson, B., and Jagerstad, M. (1979). Effect of vitamin B12 deficiency on energy-rich phosphates, glycolytic and citric acid cycle metabolites and associated amino acids in rat cerebral cortex. J. Neurochem. 32, 1115-1117. https://doi.org/10.1111/j.1471-4159.1979.tb04603.x
  17. Ferrari, D., Stepczynska, A., Los, M., Wesselborg, S., and Schulze-Osthoff, K. (1998). Differential regulation and ATP requirement for caspase-8 and caspase-3 activation during CD95- and anticancer drug-induced apoptosis. J. Exp. Med. 188, 979-984. https://doi.org/10.1084/jem.188.5.979
  18. Froese, D.S. and Gravel, R.A. (2010). Genetic disorders of vitamin B(1)(2) metabolism: eight complementation groups--eight genes. Expert Rev. Mol. Med. 12, e37. https://doi.org/10.1017/s1462399410001651
  19. Gomes, A.P., Ilter, D., Low, V., Drapela, S., Schild, T., Mullarky, E., Han, J., Elia, I., Broekaert, D., Rosenzweig, A., et al. (2022). Altered propionate metabolism contributes to tumour progression and aggressiveness. Nat. Metab. 4, 435-443. https://doi.org/10.1038/s42255-022-00553-5
  20. Grassian, A.R., Parker, S.J., Davidson, S.M., Divakaruni, A.S., Green, C.R., Zhang, X., Slocum, K.L., Pu, M., Lin, F., Vickers, C., et al. (2014). IDH1 mutations alter citric acid cycle metabolism and increase dependence on oxidative mitochondrial metabolism. Cancer Res. 74, 3317-3331.
  21. Haiman, C.A., Han, Y., Feng, Y., Xia, L., Hsu, C., Sheng, X., Pooler, L.C., Patel, Y., Kolonel, L.N., Carter, E., et al. (2013). Genome-wide testing of putative functional exonic variants in relationship with breast and prostate cancer risk in a multiethnic population. PLoS Genet. 9, e1003419. https://doi.org/10.1371/journal.pgen.1003419
  22. Inigo, M., Deja, S., and Burgess, S.C. (2021). Ins and outs of the TCA cycle: the central role of anaplerosis. Annu. Rev. Nutr. 41, 19-47. https://doi.org/10.1146/annurev-nutr-120420-025558
  23. Itatani, Y., Kawada, K., and Sakai, Y. (2019). Transforming growth factor-beta signaling pathway in colorectal cancer and its tumor microenvironment. Int. J. Mol. Sci. 20, 5822. https://doi.org/10.3390/ijms20235822
  24. Johnson, K., Kirkpatrick, H., Comer, A., Hoffmann, F.M., and Laughon, A. (1999). Interaction of Smad complexes with tripartite DNA-binding sites. J. Biol. Chem. 274, 20709-20716. https://doi.org/10.1074/jbc.274.29.20709
  25. Kishton, R.J. and Rathmell, J.C. (2015). Novel therapeutic targets of tumor metabolism. Cancer J. 21, 62-69. https://doi.org/10.1097/PPO.0000000000000099
  26. Lee, N. and Kim, D. (2016). Cancer metabolism: fueling more than just growth. Mol. Cells 39, 847-854. https://doi.org/10.14348/MOLCELLS.2016.0310
  27. Lee, S.U., Kim, M.O., Kang, M.J., Oh, E.S., Ro, H., Lee, R.W., Song, Y.N., Jung, S., Lee, J.W., Lee, S.Y., et al. (2021). Transforming growth factor-b inhibits MUC5AC expression by SMAD3/HDAC2 complex formation and NF-kB deacetylation at K310 in NCI-H292 cells. Mol. Cells 44, 38-49. https://doi.org/10.14348/molcells.2020.0188
  28. Lycan, T.W., Pardee, T.S., Petty, W.J., Bonomi, M., Alistar, A., Lamar, Z.S., Isom, S., Chan, M.D., Miller, A.A., and Ruiz, J. (2016). A phase II clinical trial of CPI-613 in patients with relapsed or refractory small cell lung carcinoma. PLoS One 11, e0164244. https://doi.org/10.1371/journal.pone.0164244
  29. Massague, J. (1998). TGF-beta signal transduction. Annu. Rev. Biochem. 67, 753-791. https://doi.org/10.1146/annurev.biochem.67.1.753
  30. Massague, J. and Wotton, D. (2000). Transcriptional control by the TGF-beta/Smad signaling system. EMBO J. 19, 1745-1754. https://doi.org/10.1093/emboj/19.8.1745
  31. McCarthy, A.J. and Chetty, R. (2018). Smad4/DPC4. J. Clin. Pathol. 71, 661-664. https://doi.org/10.1136/jclinpath-2018-205095
  32. Miyaki, M. and Kuroki, T. (2003). Role of Smad4 (DPC4) inactivation in human cancer. Biochem. Biophys. Res. Commun. 306, 799-804. https://doi.org/10.1016/S0006-291X(03)01066-0
  33. Papageorgis, P., Cheng, K., Ozturk, S., Gong, Y., Lambert, A.W., Abdolmaleky, H.M., Zhou, J.R., and Thiagalingam, S. (2011). Smad4 inactivation promotes malignancy and drug resistance of colon cancer. Cancer Res. 71, 998-1008.
  34. Pardee, T.S., Lee, K., Luddy, J., Maturo, C., Rodriguez, R., Isom, S., Miller, L.D., Stadelman, K.M., Levitan, D., Hurd, D., et al. (2014). A phase I study of the first-in-class antimitochondrial metabolism agent, CPI-613, in patients with advanced hematologic malignancies. Clin. Cancer Res. 20, 5255-5264. https://doi.org/10.1158/1078-0432.CCR-14-1019
  35. Pathania, D., Millard, M., and Neamati, N. (2009). Opportunities in discovery and delivery of anticancer drugs targeting mitochondria and cancer cell metabolism. Adv. Drug Deliv. Rev. 61, 1250-1275. https://doi.org/10.1016/j.addr.2009.05.010
  36. Pavlova, N.N. and Thompson, C.B. (2016). The emerging hallmarks of cancer metabolism. Cell Metab. 23, 27-47. https://doi.org/10.1016/j.cmet.2015.12.006
  37. Phillips, D., Aponte, A.M., French, S.A., Chess, D.J., and Balaban, R.S. (2009). Succinyl-CoA synthetase is a phosphate target for the activation of mitochondrial metabolism. Biochemistry 48, 7140-7149. https://doi.org/10.1021/bi900725c
  38. Plessl, T., Burer, C., Lutz, S., Yue, W.W., Baumgartner, M.R., and Froese, D.S. (2017). Protein destabilization and loss of protein-protein interaction are fundamental mechanisms in cblA-type methylmalonic aciduria. Hum. Mutat. 38, 988-1001. https://doi.org/10.1002/humu.23251
  39. Rajasekaran, N., Song, K., Lee, J.H., Wei, Y., Erkin, O.C., Lee, H., and Shin, Y.K. (2021). Nuclear respiratory factor-1, a novel SMAD4 binding protein, represses TGF-beta/SMAD4 signaling by functioning as a transcriptional cofactor. Int. J. Mol. Sci. 22, 5595. https://doi.org/10.3390/ijms22115595
  40. Rosenberg, L.E., Lilljeqvist, A.C., and Hsia, Y.E. (1968a). Methylmalonic aciduria. An inborn error leading to metabolic acidosis, long-chain ketonuria and intermittent hyperglycinemia. N. Engl. J. Med. 278, 1319-1322. https://doi.org/10.1056/NEJM196806132782404
  41. Rosenberg, L.E., Lilljeqvist, A., and Hsia, Y.E. (1968b). Methylmalonic aciduria: metabolic block localization and vitamin B 12 dependency. Science 162, 805-807. https://doi.org/10.1126/science.162.3855.805
  42. Rush, E.C., Katre, P., and Yajnik, C.S. (2014). Vitamin B12: one carbon metabolism, fetal growth and programming for chronic disease. Eur. J. Clin. Nutr. 68, 2-7. https://doi.org/10.1038/ejcn.2013.232
  43. Schutte, M. (1999). DPC4/SMAD4 gene alterations in human cancer, and their functional implications. Ann. Oncol. 10 Suppl 4, 56-59. https://doi.org/10.1023/A:1008336703450
  44. Sorin, M., Watkins, D., Gilfix, B.M., and Rosenblatt, D.S. (2021). Methionine dependence in tumor cells: the potential role of cobalamin and MMACHC. Mol. Genet. Metab. 132, 155-161. https://doi.org/10.1016/j.ymgme.2021.01.006
  45. Tsujimoto, Y. (1997). Apoptosis and necrosis: intracellular ATP level as a determinant for cell death modes. Cell Death Differ. 4, 429-434. https://doi.org/10.1038/sj/cdd/4400262
  46. Wan, R., Feng, J., and Tang, L. (2021). Consequences of mutations and abnormal expression of SMAD4 in tumors and T cells. Onco Targets Ther. 14, 2531-2540. https://doi.org/10.2147/OTT.S297855
  47. Wilentz, R.E., Iacobuzio-Donahue, C.A., Argani, P., McCarthy, D.M., Parsons, J.L., Yeo, C.J., Kern, S.E., and Hruban, R.H. (2000). Loss of expression of Dpc4 in pancreatic intraepithelial neoplasia: evidence that DPC4 inactivation occurs late in neoplastic progression. Cancer Res. 60, 2002-2006.
  48. Williamson, J.R. and Cooper, R.H. (1980). Regulation of the citric acid cycle in mammalian systems. FEBS Lett. 117 Suppl, K73-K85. https://doi.org/10.1016/0014-5793(80)80572-2
  49. Yan, P., Klingbiel, D., Saridaki, Z., Ceppa, P., Curto, M., McKee, T.A., Roth, A., Tejpar, S., Delorenzi, M., Bosman, F.T., et al. (2016). Reduced expression of SMAD4 is associated with poor survival in colon cancer. Clin. Cancer Res. 22, 3037-3047. https://doi.org/10.1158/1078-0432.CCR-15-0939
  50. Yen, K., Travins, J., Wang, F., David, M.D., Artin, E., Straley, K., Padyana, A., Gross, S., DeLaBarre, B., Tobin, E., et al. (2017). AG-221, a first-in-class therapy targeting acute myeloid leukemia harboring oncogenic IDH2 mutation. Cancer Discov. 7, 478-493. https://doi.org/10.1158/2159-8290.CD-16-1034
  51. Yuneva, M.O., Fan, T.W., Allen, T.D., Higashi, R.M., Ferraris, D.V., Tsukamoto, T., Mates, J.M., Alonso, F.J., Wang, C., Seo, Y., et al. (2012). The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type. Cell Metab. 15, 157-170. https://doi.org/10.1016/j.cmet.2011.12.015
  52. Zachar, Z., Marecek, J., Maturo, C., Gupta, S., Stuart, S.D., Howell, K., Schauble, A., Lem, J., Piramzadian, A., Karnik, S., et al. (2011). Non-redox-active lipoate derivatives disrupt cancer cell mitochondrial metabolism and are potent anticancer agents in-vivo. J. Mol. Med. (Berl.) 89, 1137-1148. https://doi.org/10.1007/s00109-011-0785-8
  53. Zamaraeva, M.V., Sabirov, R.Z., Maeno, E., Ando-Akatsuka, Y., Bessonova, S.V., and Okada, Y. (2005). Cells die with increased cytosolic ATP during apoptosis: a bioluminescence study with intracellular luciferase. Cell Death Differ. 12, 1390-1397. https://doi.org/10.1038/sj.cdd.4401661
  54. Zawel, L., Dai, J.L., Buckhaults, P., Zhou, S., Kinzler, K.W., Vogelstein, B., and Kern, S.E. (1998). Human Smad3 and Smad4 are sequence-specific transcription activators. Mol. Cell 1, 611-617. https://doi.org/10.1016/S1097-2765(00)80061-1
  55. Zhang, J., Dobson, C.M., Wu, X., Lerner-Ellis, J., Rosenblatt, D.S., and Gravel, R.A. (2006). Impact of cblB mutations on the function of ATP:cob(I)alamin adenosyltransferase in disorders of vitamin B12 metabolism. Mol. Genet. Metab. 87, 315-322. https://doi.org/10.1016/j.ymgme.2005.12.003