• Title/Summary/Keyword: Regularization Operator

Search Result 31, Processing Time 0.023 seconds

Analysis I of Operator Adaptive Characteristic in the Noisy-Blurred Images: Gaussian blurred and additive 20dB noise (훼손된 영상에서의 연산자 적응 특성 분석 I : 가우시안으로 흐려지고 20dB 잡음이 추가된 훼손된 영상)

  • Jeon, Woo-Sang;Han, Kun-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.5
    • /
    • pp.1685-1692
    • /
    • 2010
  • The Laplacian operator is usually used as a regularization operator which may be used as any differential operator in the regularization iterative processing. In this paper, several kinds of differential operator and proposed operator as a regularization operator were compared with each other performance. For noisy gaussian-blurred images, proposed operator worked better in the edge, while in flat region the conventional operator resulted better. In regularization, smoothing the noise and restoring the edges should be considered at the same time, so the regions divided into the flat, the middle, and the detailed, which were processed in separate and compared.

Analysis on the Regularization Parameter in Image Restoration (영상복원에서의 정칙화 연산자 분석)

  • 전우상;이태홍
    • Journal of Korea Multimedia Society
    • /
    • v.2 no.3
    • /
    • pp.320-328
    • /
    • 1999
  • The Laplacian operator is usually used as a regularization operator which may be used as any differential operator in the regularization iterative restoration. In this paper, several kinds of differential operator and 1-H operator that has been used in our lab as well, as a regularization operator, were compared with each other. In the restoration of noisy motion-blurred images, 1-H operator worked better than Laplacian operator in flat region, but in the edge the Laplacian operator operated better. For noisy gaussian-blurred image, 1-H operator worked better in the edge, while in flat region the Laplacian operator resulted better. In regularization, smoothing the noise and resorting the edges should be considered at the same time, so the regions divided into the flat, the middle, and the detailed, which were processed in separate and compared their MSE. Laplacian and 1-H operator showed to be suitable as the regularization operator, while the other differential operators appeared to be diverged as iterations proceeded.

  • PDF

PERFORMANCE OF Gℓ-PCG METHOD FOR IMAGE DENOISING PROBLEMS

  • YUN, JAE HEON
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.3_4
    • /
    • pp.399-411
    • /
    • 2017
  • We first provide the linear operator equations corresponding to the Tikhonov regularization image denoising problems with different regularization terms, and then we propose how to choose Kronecker product preconditioners which are required for accelerating the $G{\ell}$-PCG method. Next, we provide how to apply the $G{\ell}$-PCG method with Kronecker product preconditioner to the linear operator equations. Lastly, we provide numerical experiments for image denoisng problems to evaluate the effectiveness of the $G{\ell}$-PCG with Kronecker product preconditioner.

Iterative Image Restoration using Adaptive Directional Regularization (적응적인 방향성 정칙화 연산자를 이용한 반복 영상복원)

  • Kim, Yong-Hun;Shin, Hyoun-Jin;Yi, Tai-Hong
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.10
    • /
    • pp.862-867
    • /
    • 2006
  • To restore image degraded by blur and additive noise in the optical and electrical system, a regularized iterative restoration is used. A regularization operator is usually applied to all over the image without considering the local characteristics of image in conventional method. As a result, ringing artifacts appear in edge regions and the noise is amplified in flat regions. To solve these problems we propose an adaptive regularization iterative restoration considering the characteristic of edge and flat regions using directional regularization operator. Experimental results show that the proposed method suppresses the noise amplification in flat regions, and restores the edge more sharply in edge regions.

Image restoration by Adaptive Regularization Considering the Edge Direction (윤곽 방향을 고려한 적응 정칙화 영상 복원)

  • 김태선
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.9B
    • /
    • pp.1588-1595
    • /
    • 2000
  • To restore image degraded by out-of-focus blur and additivie noise a regularized iterative restoration is used. In concentional method, regularization is usually applied to all over the image without considering the local characteristics of image. As a result, ringing artifacts appear in edge regions and the noise amplification is introduced in flat regions. To solve this problem we propose an adaptive regularization iterative restoration using directional regularization operator considering edges in four directions and the regularization operator with on direction for flat regions. We verified that the proposed method show better results in the suppression of the noise amplification in flat regions, and introduced less ringing artifacts in edge regions. As a result it showed visually better image and improved better ISNR further than the conventional methods.

  • PDF

New Image Processing Methodology for Noisy-Blurred Images (잡음으로 훼손된 영상에 대한 새로운 영상처리방법론)

  • Jeon, Woo-Sang;Han, Kun-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.3
    • /
    • pp.965-970
    • /
    • 2010
  • In this paper, a iterative image restoration method is proposed to restore for noisy-blurred images. In conventional method, regularization is usually applied to all over the without considering the local characteristics of image. As a result, ringing artifacts appear in edge regions and the noise amplification is introduced in flat regions. To solvethis problem we proposed an adaptive regularization iterative restoration using directional regularization operator considering edges in four directions and the regularization operator with no direction for flat regions. We verified that the proposed methods showed better results in the suppression of the noise amplification in flat regions, and introduced less ringing artifacts in edge regions. As a result it showed visually better image and improved better ISNR further than the conventional methods.

REGULARIZATION FOR THE PROBLEM OF FINDING A SOLUTION OF A SYSTEM OF NONLINEAR MONOTONE ILL-POSED EQUATIONS IN BANACH SPACES

  • Tran, Thi Huong;Kim, Jong Kyu;Nguyen, Thi Thu Thuy
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.4
    • /
    • pp.849-875
    • /
    • 2018
  • The purpose of this paper is to present an operator method of regularization for the problem of finding a solution of a system of nonlinear ill-posed equations with a monotone hemicontinuous mapping and N inverse-strongly monotone mappings in Banach spaces. A regularization parameter choice is given and convergence rate of the regularized solutions is estimated. We also give the convergence and convergence rate for regularized solutions in connection with the finite-dimensional approximation. An iterative regularization method of zero order in a real Hilbert space and two examples of numerical expressions are also given to illustrate the effectiveness of the proposed methods.

Adaptive Image Restoration Considering the Edge Direction (윤곽 방향성을 고려한 적응적 영상복원)

  • Jeon, Woo-Sang;Lee, Myung-Sub;Jang, Ho
    • The KIPS Transactions:PartB
    • /
    • v.16B no.1
    • /
    • pp.1-6
    • /
    • 2009
  • It is very difficult to restore the images degraded by motion blur and additive noise. In conventional methods, regularization usually applies to all the images without considering local characteristics of the images. As a result, ringing artifacts appear in the edge regions and noise amplification is in the flat regions, as well. To solve these problems, we propose an adaptive iterative regularization method, using the way of regularization operator considering edge directions. In addition, we suggest an adaptive regularization parameter and an relaxation parameter. In conclusion, We have verified that the new method shows the suppression of the noise amplification in the flat regions, also does less ringing artifacts in the edge regions. Furthermore, it offers better images and improves the quality of ISNR, comparing with those of conventional methods.

The Image Restoration using Dual Adaptive Regularization Operators (이중적 정칙화 연산자를 사용한 영상복원)

  • 김승묵;전우상;이태홍
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.1B
    • /
    • pp.141-147
    • /
    • 2000
  • In the restoration of degraded noisy motion blurred image, we have trade-off problem between smoothing the noise and restoration of the edge region. While the noise is smoothed, die edge or details will be corrupted. On the other hand, restoring the edge will amplify the noise. To solve this problem we propose an adaptive algorithm which uses I- H regularization operator for flat region and Laplacian regularization operator for edge region. Through the experiments, we verify that the proposed method shows better results in the suppression of the noise amplification in flat region, introducing less ringing artifacts in edge region and better ISNR than those of the conventional ones.

  • PDF