본 논문은 통합 베이즈 티코노프 정규화 방법을 총변이 정규화에 대한 해법으로 제시한다. 통합된 방법은 총변이 항을 가중된 티코노프 정규화 항으로 변형하여 정규화 모수를 구하는 공식을 제시한다. 정규화 모수를 구하고 이를 바탕으로 새로운 가중인수를 구하는 것을 복원된 영상이 수렴하기까지 반복한다. 실험결과는 영상 복원 문제에 대하여 제안하는 방법의 효능을 보여준다.
The standard l1-norm regularization is recently introduced for impact force identification, but generally underestimates the peak force. Compared to l1-norm regularization, lp-norm (0 ≤ p < 1) regularization, with a nonconvex penalty function, has some promising properties such as enforcing sparsity. In the framework of sparse regularization, if the desired solution is sparse in the time domain or other domains, the under-determined problem with fewer measurements than candidate excitations may obtain the unique solution, i.e., the sparsest solution. Considering the joint sparse structure of impact force in temporal and spatial domains, we propose a general lp-norm (0 ≤ p < 1) regularization methodology for simultaneous identification of the impact location and force time-history from highly incomplete measurements. Firstly, a nonconvex optimization model based on lp-norm penalty is developed for regularizing the highly under-determined problem of impact force identification. Secondly, an iteratively reweighed l1-norm algorithm is introduced to solve such an under-determined and unconditioned regularization model through transforming it into a series of l1-norm regularization problems. Finally, numerical simulation and experimental validation including single-source and two-source cases of impact force identification are conducted on plate structures to evaluate the performance of lp-norm (0 ≤ p < 1) regularization. Both numerical and experimental results demonstrate that the proposed lp-norm regularization method, merely using a single accelerometer, can locate the actual impacts from nine fixed candidate sources and simultaneously reconstruct the impact force time-history; compared to the state-of-the-art l1-norm regularization, lp-norm (0 ≤ p < 1) regularization procures sufficiently sparse and more accurate estimates; although the peak relative error of the identified impact force using lp-norm regularization has a decreasing tendency as p is approaching 0, the results of lp-norm regularization with 0 ≤ p ≤ 1/2 have no significant differences.
전기 저항률 단층촬영법(ERT)은 표면 전극으로부터 측정된 전압을 사용하여 물체 내부의 임피던스 분포를 영상화하는 기술이다. ERT 역문제는 비정치성(ill-posedness)이 매우 심하여 영상복원의 수렴성을 확보하기 위해 조정방법이 사용된다. 사용된 조정방법에 따라 영상복원 성능이 달라지므로 상황에 따라 보다 강건한 영상 복원 성능을 얻기 위해, 서로 다른 영상복원 특성을 나타내는 L1-norm 조정방법과 Total Variation (TV) 조정방법의 두 개의 모드가 상호작용하는 상호작용 이중-모드 조정방법을 제안하였다. 제안한 이중-모드 조정방법은 실제 상황에 따라 달라지는 모드 확률을 계산하고 이에 근거하여 적합한 모드를 선택하거나 두 개의 모드를 결합한다. 모의실험을 수행하여 제안된 기법의 영상 복원 성능을 평가한 결과 비교적 양호한 성능을 나타내었다.
We introduce three spectral regularization methods for solving a backward heat conduction problem (BHCP). For the three spectral regularization methods, we give the stability error estimates with optimal order under an a-priori and an a-posteriori regularization parameter choice rule. Numerical results show that our theoretical results are effective.
Two types of regularization method (singular system and HMP approaches) for generating depth-concentration profiles from angle-resolved XPS data were evaluated. Both approaches showed qualitatively similar results although they employed different numerical algorithms. The application of the regularization method to simulated data demonhstrates its excellent utility for the complex depth profile system . It includes the stable restoration of depth-concentration profiles from the data with considerable random error and the self choice of smoothing parameter that is imperative for the successful application of the regularization method. The self choice of smoothing parameter is based on generalized cross-validation method which lets the data themselves choose the optimal value of the parameter.
Solutions to the problems of structural parameter estimation from modal response using leastsquares minimization of force or displacement residuals are generally sensitive to noise in the response measurements. The sensitivity of the parameter estimates is governed by the physical characteristics of the structure and certain features of the noisy measurements. It has been shown that the regularization method can be used to reduce effects of the measurement noise on the estimation error through adding a regularization function to the parameter estimation objective function. In this paper, we adopt the regularization function as the Euclidean norm of the difference between the values of the currently estimated parameters and the a priori parameter estimates. The effect of the regularization function on the outcome of parameter estimation is determined by a regularization factor. Based on a singular value decomposition of the sensitivity matrix of the structural response, it is shown that the optimal regularization factor is obtained by using the maximum singular value of the sensitivity matrix. This selection exhibits the condition where the effect of the a priori estimates on the solutions to the parameter estimation problem is minimal. The performance of the proposed algorithm is investigated in comparison with certain algorithms selected from the literature by using a numerical example.
Fuzzy c-means(FCM)와 possibilistic c-means(PCM)는 퍼지 클러스터링 영역에서 대표적인 두 가지 방법으로 많은 패턴 인식 문제들에 성공적으로 활용되어져 왔다. 하지만 이들 방법 역시 잡음 민감성과 중첩 클러스터 문제를 가지고 있다. 이들 문제점을 극복하기 위해, 최근 두 방법을 결합하려는 시도가 있어왔고, possibilistic fuzzy c-means(PFCM)는 FCM과 PCM을 목적 함수 단계에서 통합함으로써 두 방법이 가지는 문제점을 완화시키는 성공적인 결과를 보여주었다. 이 논문에서는 PFCM에 regularization을 도입함으로써 PFCM의 잡음 민감성을 한층 더 줄여줄 수 있는 향상된 PFCM을 소개한다. Regularization은 해공간을 평탄화 함으로써 잡음의 영향을 줄이는 대표적인 방법 중 하나이다. 제안한 방법은 PFCM의 장점과 더불어 regularization에 의해 잡음의 영향을 더욱 줄일 수 있으며, 이는 실험을 통해 확인할 수 있다.
A vortex sheet is susceptible to the Kelvin-Helmhotz instability, which leads to a singularity at finite time. The vortex blob model provided a regularization for the motion of vortex sheets in an inviscid fluid. In this paper, we consider the blob model for viscous vortex sheets and present a linear stability analysis for regularized sheets. We show that the diffusing viscous vortex sheet is unstable to small perturbations, regardless of the regularization, but the viscous sheet in the sharp limit becomes stable, when the regularization is applied. Both the regularization parameter and viscosity damp the growth rate of the sharp viscous vortex sheet for large wavenumbers, but the regularization parameter gives more significant effects than viscosity.
본 논문은 영상 복원 문제에 대한 정규화 모수를 찾는 새로운 방법을 제시한다. 위너 필터(Wiener filter)는 원본 영상과 잡음의 파워 스펙트럼 등의 사전 정보를 요구한다. 제약된 최소자승 복원 역시 노이즈 수준에 대한 지식을 요구한다. 사전 정보가 없으면 티코노프(Tikhonov) 정규화 모수를 선택하기 위한 일반화된 교차 검증법이나 L자형 곡선 검정 등의 별도의 최적화 함수가 필요하다. 본 논문에서는 주파수 영역에서 선형 시스템의 바이어스 항목과 티코노프 정규화 시스템의 평활화 항목을 연결하는 자기 정규화 방법을 제안하고 영상 복원 문제에 적용한다. 실험결과는 제안하는 방법의 효능을 보여준다.
본 논문은 영상 복원 문제에 대한 정규화 모수를 찾는 새로운 방법을 제시한다. 사전 정보가 없으면 티코노프(Tikhonov) 정규화 모수를 선택하기 위한 일반화된 교차 검증법이나 L자형 곡선 검정 등의 별도의 최적화 함수가 필요하다. 본 논문에서는 티코노프 정규화에 대한 통합된 베이즈 해석을 소개하고 영상 복원 문제에 적용한다. 티코노프 정규화 모수와 베이즈 하이퍼 모수들의 관계를 정립하고 최대 사후 확률과 근거 프레임워크를 사용한 정규화 모수를 구하는 공식을 제시한다. 실험결과는 제안하는 방법의 효능을 보여준다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.