DOI QR코드

DOI QR Code

Resistivity Image Reconstruction Using Interacting Dual-Mode Regularization

상호작용 이중-모드 조정방법을 이용한 저항률 영상 복원

  • Kang, Suk-In (Faculty of Applied Energy System, Major of Electronic Engineering, Jeju National University) ;
  • Kim, Kyung-Youn (Dept. of Electronic Engineering, Jeju National University)
  • Received : 2016.05.11
  • Accepted : 2016.06.22
  • Published : 2016.06.30

Abstract

Electrical resistivity tomography (ERT) is a technique to reconstruct the internal resistivity distribution using the measured voltages on the surface electrodes. ERT inverse problem suffers from ill-posedness nature, so regularization methods are used to mitigate ill-posedness. The reconstruction performance varies depending on the type of regularization method. In this paper, an interacting dual-mode regularization method is proposed with two different regularization methods, L1-norm regularization and total variation (TV) regularization, to achieve robust reconstruction performance. The interacting dual-mode regularization method selects the suitable regularization method and combines the regularization methods based on computed mode probabilities depending on the actual conditions. The proposed method is tested with numerical simulations and the results demonstrate an improved reconstruction performance.

전기 저항률 단층촬영법(ERT)은 표면 전극으로부터 측정된 전압을 사용하여 물체 내부의 임피던스 분포를 영상화하는 기술이다. ERT 역문제는 비정치성(ill-posedness)이 매우 심하여 영상복원의 수렴성을 확보하기 위해 조정방법이 사용된다. 사용된 조정방법에 따라 영상복원 성능이 달라지므로 상황에 따라 보다 강건한 영상 복원 성능을 얻기 위해, 서로 다른 영상복원 특성을 나타내는 L1-norm 조정방법과 Total Variation (TV) 조정방법의 두 개의 모드가 상호작용하는 상호작용 이중-모드 조정방법을 제안하였다. 제안한 이중-모드 조정방법은 실제 상황에 따라 달라지는 모드 확률을 계산하고 이에 근거하여 적합한 모드를 선택하거나 두 개의 모드를 결합한다. 모의실험을 수행하여 제안된 기법의 영상 복원 성능을 평가한 결과 비교적 양호한 성능을 나타내었다.

Keywords

Acknowledgement

Supported by : NRF

References

  1. D. S. Holder, Electrical Impedance Tomography: Methods, History and Applications, IOP Publishing Ltd, 2005.
  2. M. Vauhkonen, Electrical Impedance Tomography and prior information, Ph.D. Thesis, University of Kuopio, Finland, 1997.
  3. K. Y. Kim and B. S. Kim, "Regularized Modified Newton-Raphson Algorithm for Electrical Impedance Tomography Based on the Exponentially Weighted Least Square Criterion," Journal of IEEE Korea Council, vol. 4, no. 2, pp. 77-84, 2000.
  4. S. I. Kang and K. Y. Kim, "Image Reconstruction Using Iterative Regularization Scheme Based on Residual Error in Electrical Impedance Tomography," Journal of IKEEE, vol. 18, no. 2, pp. 272-281, 2014. https://doi.org/10.7471/ikeee.2014.18.2.272
  5. M. Cheney, D. Isaacson, J.C. Newell, S. Simske and J. Goble, "NOSER: An algorithm for solving the inverse conductivity problem," Int. J. Imaging Syst. Technol., vol. 2, no. 2, pp. 66-75, 1990. https://doi.org/10.1002/ima.1850020203
  6. W. Fan, H. Wang, Q. Xue, Z. Cui, B. Sun and Q. Wang, "Modified sparse regularization for electrical impedance tomography," Review of Scientific Instruments, vol. 87, no. 034702, pp. 1-13, 2016.
  7. B. Jin, T. Khan and P. Maass, "A reconstruction algorithm for electrical impedance tomography based on sparsity regularization," Int J Numer Methods Eng, vol. 89, pp. 337-353, 2011.
  8. M. Gehre, T. Kluth, A. Lipponen, B. Jin, A. Seppanen, J. P. Kaipio and P. Maass, "Sparsity reconstruction in electrical impedance tomography: An experimental evaluation," Journal of Computational and Applied Mathematics, vol. 236, pp. 2126-2136, 2012. https://doi.org/10.1016/j.cam.2011.09.035
  9. T. Dai and A. Adler, "Electrical Impedance Tomography Reconstruction Using l1 Norms for Data and Image Terms," 30th Annual International IEEE EMBS Conference, Vancouver, British Columbia, Canada, August. 2008, pp. 2721-2724.
  10. A. Borsic, B. M. Graham, A. Adler and W. R. B. Lionheart, "Total Variation Regularization in Electrical Impedance Tomography," Technical Report 92, School of Mathematics, University of Manchester, pp. 1-26, 2007.
  11. A. Borsic, B. M. Graham, A. Adler and W. R. B. Lionheart, "In vivo Impedance Imaging With Total Variation Regularization," IEEE Transactions on Medical Imaging, vol. 29, no. 1, pp. 44-54, 2010. https://doi.org/10.1109/TMI.2009.2022540
  12. T. J. Yorkey, J. G. Webster and W. J. Tompkins, "Comparing Reconstruction Algorithms for Electrical Impedance Tomography," IEEE Transactions on Biomedical Engineering, vol. 34, no. 11, pp. 843-852, 1987.
  13. E. Somersalo, M. Cheney and D. Isaacson, "Existence and uniqueness for electrode models for electric current computed tomography," SIAM J. Appl. Math., vol. 52, no. 4, pp. 1023-1040, 1992.
  14. B. S. Kim, M. C. Kim, S. Kim and K. Y. Kim, "Nonstationary electrical impedance tomography with the interacting multiple model scheme," Measurement Science and Technology, vol. 15, no. 10, pp. 2113-2123, 2004. https://doi.org/10.1088/0957-0233/15/10/022