• Title/Summary/Keyword: Regressive modeling

Search Result 47, Processing Time 0.028 seconds

A Compensation Technique for Dispersive and Resonant Wideband Antenna using Stable Minimum-Phase ARMA System Modeling for Coherent Impulse Communication Systems (안정성을 갖는 최소 위상 ARMA 시스템 모델링을 이용한 코히어런트 임펄스 통신 시스템의 광대역 안테나 확산 및 공진 특성 보상 기법)

  • Lee Won-Cheol;Park Woon-Yong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.10 s.89
    • /
    • pp.983-995
    • /
    • 2004
  • This paper introduces a pre-compensation filter for compensating dispersive and resonant properties experienced along the usage of non-ideal wideband antennas in impulse communication systems. It has been well blown that the transmitted impulse signal becomes deformed because of dispersive and resonant characteristics. Accordingly, in spite of using ideal template signal at the correlator in coherent receiver, these impairments degrade overall performance attributed to low level of coherence. To overcome this problem this paper exploits a realization technique of pre-compensation filter purposely installed at transmitter whose stability is automatically guaranteed because it has an inversion form of minimum-phase ARMA (Auto-Regressive Moving Average) system. The performance of proposed scheme will be shown in results from computer simulations to verify its affirmative impact on impulse communication system with regarding several distinctively shaped antennas.

A novel OCV Hysteresis Modeling for SOC estimation of Lithium Iron Phosphate battery (리튬인산철 배터리를 위한 새로운 히스테리시스 모델링)

  • Nguyen, Thanh Tung;Khan, Abdul Basit;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2016.11a
    • /
    • pp.75-76
    • /
    • 2016
  • The relationship of widely used Open circuit Voltage (OCV) versus State of Charge (SOC) is critical for any reliable SOC estimation technique. However, the hysteresis existing in all type of battery which has been come to the market leads this relationship to a complicated one, especially in Lithium Iron Phosphate (LiFePO4) battery. An accurate model for hysteresis phenomenon is essential for a reliable SOC identification. This paper aims to investigate and propose a method for hysteresis modeling. The SOC estimation is done by using Extended Kalman Filter (EKF), the parameter of the battery is modeled by Auto Regressive Exogenous (ARX) and estimated by using Recursive Least Square (RLS) filter to tract each element of the parameter of the model.

  • PDF

Modeling Exponential Growth in Population using Logistic, Gompertz and ARIMA Model: An Application on New Cases of COVID-19 in Pakistan

  • Omar, Zara;Tareen, Ahsan
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.1
    • /
    • pp.192-200
    • /
    • 2021
  • In the mid of the December 2019, the virus has been started to spread from China namely Corona virus. It causes fatalities globally and WHO has been declared as pandemic in the whole world. There are different methods which can fit such types of values which obtain peak and get flattened by the time. The main aim of the paper is to find the best or nearly appropriate modeling of such data. The three different models has been deployed for the fitting of the data of Coronavirus confirmed patients in Pakistan till the date of 20th November 2020. In this paper, we have conducted analysis based on data obtained from National Institute of Health (NIH) Islamabad and produced a forecast of COVID-19 confirmed cases as well as the number of deaths and recoveries in Pakistan using the Logistic model, Gompertz model and Auto-Regressive Integrated Moving Average Model (ARIMA) model. The fitted models revealed high exponential growth in the number of confirmed cases, deaths and recoveries in Pakistan.

Modeling of Reaction Wheel Using KOMPSAT-1 Telemetry (KOMPSAT-1 Telemetry를 활용한 반작용휠 모델링)

  • Lee, Seon-Ho;Choi, Hong-Taek;Yong, Gi-Ryeok;Oh, Si-Hwan;Rhee, Seung-U
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.45-50
    • /
    • 2004
  • The design of reaction wheel control logic is critical to achieve the spacecraft attitude stabilization and performance requirements for the successful mission. Due to various uncertainties on orbit there exist limitation to obtain the model parameters through the ground tests and to design the associated control logic. Thus, the model parameter correction using on-orbit data is essential to the control performance on orbit. This paper performs the system identification using KOMPSAT-1 telemetry data and extracts the model parameters of the reaction wheel. Moreover, the reaction wheel is remodeled and compared with the ground test results.

A Study on the AR Identification of unknown system using Cumulant (Cumulant를 이용한 미지 시스템의 AR 식별에 관한 연구)

  • Lim, Seung-Gag
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.2 s.344
    • /
    • pp.39-43
    • /
    • 2006
  • This paper deals with the AR Identification of unknown system using cumulant, which is the 3rd order statistics of output signal in the presence of the noise signal. The algorithms for identification of unknown system we applies to the AR identification method using the cumulant which is possible to the guarantees of global convergence and the representation of amplitude and phase information of system among with the method of parametric modeling. In the process of identification, we considered unknown system to the one of AR system. After the generation of input signal, it was being passed through the system then We use the its output signal that the noise is added. As a result of identification of AR system by changing the signal to noise ratio, we get the fairly good results compared to original system output values and confirmed that the pole was located in the unit circle of z transform.

ARIMA Based Wind Speed Modeling for Wind Farm Reliability Analysis and Cost Estimation

  • Rajeevan, A.K.;Shouri, P.V;Nair, Usha
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.869-877
    • /
    • 2016
  • Necessity has compelled man to improve upon the art of tapping wind energy for power generation; an apt reliever of strain exerted on the non-renewable fossil fuel. The power generation in a Wind Farm (WF) depends on site and wind velocity which varies with time and season which in turn determine wind power modeling. It implies, the development of an accurate wind speed model to predict wind power fluctuations at a particular site is significant. In this paper, Box-Jenkins ARIMA (Auto Regressive Integrated Moving Average) time series model for wind speed is developed for a 99MW wind farm in the southern region of India. Because of the uncertainty in wind power developed, the economic viability and reliability of power generation is significant. Life Cycle Costing (LCC) method is used to determine the economic viability of WF generated power. Reliability models of WF are developed with the help of load curve of the utility grid and Capacity Outage Probability Table (COPT). ARIMA wind speed model is used for developing COPT. The values of annual reliability indices and variations of risk index of the WF with system peak load are calculated. Such reliability models of large WF can be used in generation system planning.

Feedback Flow Control Using Artificial Neural Network for Pressure Drag Reduction on the NACA0015 Airfoil (NACA0015 익형의 압력항력 감소를 위한 인공신경망 기반의 피드백 유동 제어)

  • Baek, Ji-Hye;Park, Soo-Hyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.9
    • /
    • pp.729-738
    • /
    • 2021
  • Feedback flow control using an artificial neural network was numerically investigated for NACA0015 Airfoil to suppress flow separation on an airfoil. In order to achieve goal of flow control which is aimed to reduce the size of separation on the airfoil, Blowing&Suction actuator was implemented near the separation point. In the system modeling step, the proper orthogonal decomposition was applied to the pressure field. Then, some POD modes that are necessary for flow control are extracted to analyze the unsteady characteristics. NARX neural network based on decomposed modes are trained to represent the flow dynamics and finally operated in the feedback control loop. Predicted control signal was numerically applied on CFD simulation so that control effect was analyzed through comparing the characteristic of aerodynamic force and spatial modes depending on the presence of the control. The feedback control showed effectiveness in pressure drag reduction up to 29%. Numerical results confirm that the effect is due to dramatic pressure recovery around the trailing edge of the airfoil.

Nuclear Reactor Modeling in Load Following Operations for UCN 3 with NARX Neural Network - (NARX 신경회로망을 이용한 부하추종운전시의 울진 3호기 원자로 모델링)

  • Lee, Sang-Kyung;Lee, Un-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.21-23
    • /
    • 2005
  • NARX(Nonlinear AutoRegressive with eXogenous input) neural network was used for prediction of nuclear reactor behavior which was influenced by control rods in short-term period and also by xenon and boron in long-term period in load following operations. The developed model was designed to predict reactor power, xenon worth and axial offset with different burnup rates when control rod and boron were adjusted in load following operations. Data of UCN 3 were collected by ONED94 code. The test results presented exhibit the capability of the NARX neural network model to capture the long term and short term dynamics of the reactor core and seems to be utilized as a handy tool for the use of a plant simulation.

  • PDF

Natural Mode Analysis for Chatter Lobe Estimation (채터로브 계산을 위한 고유모우드 분석법)

  • Yoon, Moon-Chul;Cho, Hyun-Deog;Lee, Eung-Soog
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.2
    • /
    • pp.60-66
    • /
    • 2003
  • For the estimation of chatter lobe boundary it is very important to calculate the natural mode of cutting process. There are many time series algorithms for getting the natural mode of structural endmilling dynamics considering the cutting process. In this study, we have compared several time series methods such as AR algorithm, ARX, ARMAX, ARMA, Box Jenkins, Output Error, Recursive ARX, Recursive ARMAX considering the sampling frequency. As a results, the ARX, ARMAX and IV 4 are more desirable algorithms for the calculation of modal parameters such as natural frequency and damping ratio In endmilling operation. Also these algorithms may be adopted for the natural mode estimation of endmilling operation for chatter lobe prediction.

  • PDF

Stochastic Simulation Model for non-stationary time series using Wavelet AutoRegressive Model

  • Moon, Young-Il;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1437-1440
    • /
    • 2007
  • Many hydroclimatic time series are marked by interannual and longer quasi-period features that are associated with narrow band oscillatory climate modes. A time series modeling approach that directly considers such structures is developed and presented. The essence of the approach is to first develop a wavelet decomposition of the time series that retains only the statistically significant wavelet components, and to then model each such component and the residual time series as univariate autoregressive processes. The efficacy of this approach is demonstrated through the simulation of observed and paleo reconstructions of climate indices related to ENSO and AMO, tree ring and rainfall time series. Long ensemble simulations that preserve the spectral attributes of the time series in each ensemble member can be generated. The usual low order statistics are preserved by the proposed model, and its long memory performance is superior to the direction application of an autoregressive model.

  • PDF