• Title/Summary/Keyword: Regression Statistical Analysis

Search Result 3,457, Processing Time 0.032 seconds

Nonparametric Estimation of Discontinuous Variance Function in Regression Model

  • 강기훈;허집
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2002년도 추계 학술발표회 논문집
    • /
    • pp.103-108
    • /
    • 2002
  • We consider an estimation of discontinuous variance function in nonparametric heteroscedastic random design regression model. We first propose estimators of a change point and jump size in variance function and then construct an estimator of entire variance function. We examine the rates of convergence of these estimators and give results on their asymptotics. Numerical work reveals that the effectiveness of change point analysis in variance function estimation is quite significant.

  • PDF

On Bootstrapping; Bartlett Adjusted Empirical Likelihood Ratio Statistic in Regression Analysis

  • Woochul Kim;Duk-Hyun Ko;Keewon Lee
    • Journal of the Korean Statistical Society
    • /
    • 제25권2호
    • /
    • pp.205-216
    • /
    • 1996
  • The bootstrap calibration method for empirical likelihood is considered to make a confidence region for the regression coefficients. Asymptotic properties are studied regarding the coverage probability. Small sample simulation results reveal that the bootstrap calibration works quite well.

  • PDF

Asymptotic Properties of LAD Esimators of a Nonlinear Time Series Regression Model

  • Kim, Tae-Soo;Kim, Hae-Kyung;Park, Seung-Hoe
    • Journal of the Korean Statistical Society
    • /
    • 제29권2호
    • /
    • pp.187-199
    • /
    • 2000
  • In this paper, we deal with the asymptotic properties of the least absolute deviation estimators in the nonlinear time series regression model. For the sinusodial model which frequently appears in a time series analysis, we study the strong consistency and asymptotic normality of least absolute deviation estimators. And using the derived limiting distributions we show that the least absolute deviation estimators is more efficient than the least squared estimators when the error distribution of the model has heavy tails.

  • PDF

Bayesian Analysis for Random Effects Binomial Regression

  • Kim, Dal-Ho;Kim, Eun-Young
    • Communications for Statistical Applications and Methods
    • /
    • 제7권3호
    • /
    • pp.817-827
    • /
    • 2000
  • In this paper, we investigate the Bayesian approach to random effect binomial regression models with improper prior due to the absence of information on parameter. We also propose a method of estimating the posterior moments and prediction and discuss some general methods for studying model assessment. The methodology is illustrated with Crowder's Seeds Data. Markov Chain Monte Carlo techniques are used to overcome the computational difficulties.

  • PDF

Semiparametric Bayesian Regression Model for Multiple Event Time Data

  • Kim, Yongdai
    • Journal of the Korean Statistical Society
    • /
    • 제31권4호
    • /
    • pp.509-518
    • /
    • 2002
  • This paper is concerned with semiparametric Bayesian analysis of the proportional intensity regression model of the Poisson process for multiple event time data. A nonparametric prior distribution is put on the baseline cumulative intensity function and a usual parametric prior distribution is given to the regression parameter. Also we allow heterogeneity among the intensity processes in different subjects by using unobserved random frailty components. Gibbs sampling approach with the Metropolis-Hastings algorithm is used to explore the posterior distributions. Finally, the results are applied to a real data set.

GMS Brightness를 사용한 구름 두께와 가강수량의 통계적 추정 (Statistical Estimates of Cloud Thickness and Precipitable Water from GMS Brightness Data)

  • 최영진;신동인
    • 대한원격탐사학회지
    • /
    • 제6권2호
    • /
    • pp.153-164
    • /
    • 1990
  • A statistical correlation between cloud thickness and brightness is shown by regression analysis using the least-square method. Cloud thicknesses are obtained from radiosonde observation. Brightness values are obtained from GMS visible channel. Regression analyses are preformed on both thickness data used in conjunction with brightness data for summer season. The results are shown by the regression curve relating thickness and brightness accounting for 79% of variance. And the relationship between thickness and precipitable water in the cloud layers is analyzed. The thickness shows a positive correlation with precipitable water in cloudy layers.

Graphical Methods for the Sensitivity Analysis in Discriminant Analysis

  • Jang, Dae-Heung;Anderson-Cook, Christine M.;Kim, Youngil
    • Communications for Statistical Applications and Methods
    • /
    • 제22권5호
    • /
    • pp.475-485
    • /
    • 2015
  • Similar to regression, many measures to detect influential data points in discriminant analysis have been developed. Many follow similar principles as the diagnostic measures used in linear regression in the context of discriminant analysis. Here we focus on the impact on the predicted classification posterior probability when a data point is omitted. The new method is intuitive and easily interpretable compared to existing methods. We also propose a graphical display to show the individual movement of the posterior probability of other data points when a specific data point is omitted. This enables the summaries to capture the overall pattern of the change.

경영정보의 인과구조 구축을 위한 다변량통계기법 적용에 관한 연구 (A study on applying multivariate statistical method for making casual structure in management information)

  • 조성훈;김태성
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 1996년도 추계학술대회발표논문집; 고려대학교, 서울; 26 Oct. 1996
    • /
    • pp.117-120
    • /
    • 1996
  • The objective of this study is to suggest modified Covariance Structure Analysis that combine with existing Multivariate Statistical Method which is used Casual Analysis Method in Management Information. For this purpose, we'll consider special feature and limitation about Correlation Analysis, Regression Analysis, Path Analysis and connect Covariance Structure Analysis with Statistical Factor Analysis so that theoretical casual model compare with variables structure in collecting data. A example is also presented to show the practical applicability of this approach.

  • PDF

A comparative study of the Gini coefficient estimators based on the regression approach

  • Mirzaei, Shahryar;Borzadaran, Gholam Reza Mohtashami;Amini, Mohammad;Jabbari, Hadi
    • Communications for Statistical Applications and Methods
    • /
    • 제24권4호
    • /
    • pp.339-351
    • /
    • 2017
  • Resampling approaches were the first techniques employed to compute a variance for the Gini coefficient; however, many authors have shown that an analysis of the Gini coefficient and its corresponding variance can be obtained from a regression model. Despite the simplicity of the regression approach method to compute a standard error for the Gini coefficient, the use of the proposed regression model has been challenging in economics. Therefore in this paper, we focus on a comparative study among the regression approach and resampling techniques. The regression method is shown to overestimate the standard error of the Gini index. The simulations show that the Gini estimator based on the modified regression model is also consistent and asymptotically normal with less divergence from normal distribution than other resampling techniques.

Permutation Predictor Tests in Linear Regression

  • Ryu, Hye Min;Woo, Min Ah;Lee, Kyungjin;Yoo, Jae Keun
    • Communications for Statistical Applications and Methods
    • /
    • 제20권2호
    • /
    • pp.147-155
    • /
    • 2013
  • To determine whether each coefficient is equal to zero or not, usual $t$-tests are a popular choice (among others) in linear regression to practitioners because all statistical packages provide the statistics and their corresponding $p$-values. Under smaller samples (especially with non-normal errors) the tests often fail to correctly detect statistical significance. We propose a permutation approach by adopting a sufficient dimension reduction methodology to overcome this deficit. Numerical studies confirm that the proposed method has potential advantages over the t-tests. In addition, data analysis is also presented.