• Title/Summary/Keyword: Regression Model Optimization

Search Result 334, Processing Time 0.084 seconds

유전자 알고리듬을 이용한 다중이상치 탐색

  • Go Yeong-Hyeon;Lee Hye-Seon;Jeon Chi-Hyeok
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2000.11a
    • /
    • pp.173-179
    • /
    • 2000
  • Genetic algorithm(GA) is applied for detecting multiple outliers. GA is a heuristic optimization tool solving for near optimal solution. We compare the performance of GA and the other diagnostic measures commonly used for detecting outliers in regression model. The results show that GA seems to have better performance than the others for the detection of multiple outliers.

  • PDF

A Stay Time Optimization Model Emergency Medical Center (EMC) (응급의료센터 체류시간 최적화)

  • Kim, Eun-Joo;Lim, Ji-Young;Ryu, Jeong-Soon;Cho, Sun-Hee;Bae, Na-Ri;Kim, Sang-Suk
    • Journal of Home Health Care Nursing
    • /
    • v.18 no.2
    • /
    • pp.81-87
    • /
    • 2011
  • Purpose: The aim of this study was to estimate optimization model of stay time in EMC. Methods: Data were collected at an EMC in a hospital using medical records from June to August in 2007. The sample size was 8,378. The data were structured by stay time for doctor visit, decision making, and discharge from EMC. Descriptive statistics were used to find out general characteristics of patients. Average mean and quantile regression models were adopted to estimate optimized stay time in EMC. Results: The stay times in EMC were highly skewed and non-normal distributions. Therefore, average mean as an indicator of optimal stay time was not appropriate. The total stay time using conditional quantile regression model was estimated about 110 min, that was about 166 min shorter than estimated time using average mean. Conclusion: According to these results, we recommend to use a conditional quantile regression model to estimate optimal stay time in EMC. We suggest that this results will be used to develop a guideline to manage stay time more effectively in EMC.

  • PDF

Optimal Design of Shock Absorber using High Speed Stability (고속 안정성을 고려한 쇽업소버 최적 설계)

  • 이광기;모종운;양욱진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.4
    • /
    • pp.1-8
    • /
    • 1998
  • In order to solve the conflict problem between the ride comfort and the road holding, the optimal design of shock absorber that minimizes the r.m.s. of sprung mass vertical acceleration and pitch rate with the understeer characteristics constraints in the high speed stability is proposed. The design of experiments and the nonlinear optimization algorithm are used together to obtain the optimal design of shock absorber. The second order regression models of the input variables(front and rear damping coefficients) and the output variables (ride comfort index and road holding one) are obtained by the central composite design in the design of experiments. Then the optimal design of shock absorber can be systematically adjusted with applying the nonlinear optimization algorithm to the obtained second order regression model. The frequency response analysis of sprung mass acceleration and pitch rate shows the effectiveness of the proposed optimal design of shock absorber in the sprung mass resonance range with the understeer characteristics constraints.

  • PDF

Empirical process optimization through response surface experiments and model building

  • PARK, SUNG H.
    • Journal of Korean Society for Quality Management
    • /
    • v.8 no.1
    • /
    • pp.3-7
    • /
    • 1980
  • In many industrial processes, there are more than two responses (i.e., yield, percent impurity, etc.) of interest, and it is desirable to determine the optimal levels of the factors (i.e., temperature, pressure, etc.) that influence the responses. Suppose the response relationships are assumed to be approximated by second-order polynomial regression models. The problems considered in this paper is, first, to propose how to select polynomial terms to fit the multivariate regression surfaces for a given set of data, and, second, to propose how to analyze the data to obtain an optimal operating condition for the factors. The proposed techniques were applied for empirical process optimization in a tire company in Korea. This case is presented as an illustration.

  • PDF

FINDING EXPLICIT SOLUTIONS FOR LINEAR REGRESSION WITHOUT CORRESPONDENCES BASED ON REARRANGEMENT INEQUALITY

  • MIJIN KIM;HYUNGU LEE;HAYOUNG CHOI
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.1
    • /
    • pp.149-158
    • /
    • 2024
  • A least squares problem without correspondences is expressed as the following optimization: Π∈Pminm, x∈ℝn ║Ax-Πy║, where A ∈ ℝm×n and y ∈ ℝm are given. In general, solving such an optimization problem is highly challenging. In this paper we use the rearrangement inequalities to find the closed form of solutions for certain cases. Moreover, despite the stringent constraints, we successfully tackle the nonlinear least squares problem without correspondences by leveraging rearrangement inequalities.

Developed multiple linear regression model using genetic algorithm for predicting top-bead width in GMA welding process

  • Thao, D.T.;Kim, I.S.;Son, J.S.;Seo, J.B.
    • Proceedings of the KWS Conference
    • /
    • 2006.10a
    • /
    • pp.271-273
    • /
    • 2006
  • This paper focuses on the developed empirical models for the prediction on top-bead width in GMA(Gas Metal Arc) welding process. Three empirical models have been developed: linear, curvilinear and an intelligent model. Regression analysis was employed fur optimization of the coefficients of linear and curvilinear model, while Genetic Algorithm(GA) was utilized to estimate the coefficients of intelligent model. Not only the fitting of these models were checked, but also the prediction on top-bead width was carried out. ANOVA analysis and contour plots were respectively employed to represent main and interaction effects between process parameters on top-bead width.

  • PDF

A Study on The Optimization Method of The Initial Weights in Single Layer Perceptron

  • Cho, Yong-Jun;Lee, Yong-Goo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.2
    • /
    • pp.331-337
    • /
    • 2004
  • In the analysis of massive volume data, a neural network model is a useful tool. To implement the Neural network model, it is important to select initial value. Since the initial values are generally used as random value in the neural network, the convergent performance and the prediction rate of model are not stable. To overcome the drawback a possible method use samples randomly selected from the whole data set. That is, coefficients estimated by logistic regression based on the samples are the initial values.

  • PDF

Intelligent prediction of engineered cementitious composites with limestone calcined clay cement (LC3-ECC) compressive strength based on novel machine learning techniques

  • Enming Li;Ning Zhang;Bin Xi;Vivian WY Tam;Jiajia Wang;Jian Zhou
    • Computers and Concrete
    • /
    • v.32 no.6
    • /
    • pp.577-594
    • /
    • 2023
  • Engineered cementitious composites with calcined clay limestone cement (LC3-ECC) as a kind of green, low-carbon and high toughness concrete, has recently received significant investigation. However, the complicated relationship between potential influential factors and LC3-ECC compressive strength makes the prediction of LC3-ECC compressive strength difficult. Regarding this, the machine learning-based prediction models for the compressive strength of LC3-ECC concrete is firstly proposed and developed. Models combine three novel meta-heuristic algorithms (golden jackal optimization algorithm, butterfly optimization algorithm and whale optimization algorithm) with support vector regression (SVR) to improve the accuracy of prediction. A new dataset about LC3-ECC compressive strength was integrated based on 156 data from previous studies and used to develop the SVR-based models. Thirteen potential factors affecting the compressive strength of LC3-ECC were comprehensively considered in the model. The results show all hybrid SVR prediction models can reach the Coefficient of determination (R2) above 0.95 for the testing set and 0.97 for the training set. Radar and Taylor plots also show better overall prediction performance of the hybrid SVR models than several traditional machine learning techniques, which confirms the superiority of the three proposed methods. The successful development of this predictive model can provide scientific guidance for LC3-ECC materials and further apply to such low-carbon, sustainable cement-based materials.

CONFIDENCE CURVES FOR A FUNCTION OF PARAMETERS IN NONLINEAR REGRESSION

  • Kahng, Myung-Wook
    • Journal of the Korean Statistical Society
    • /
    • v.32 no.1
    • /
    • pp.1-10
    • /
    • 2003
  • We consider obtaining graphical summaries of uncertainty in estimates of parameters in nonlinear models. A nonlinear constrained optimization algorithm is developed for likelihood based confidence intervals for the functions of parameters in the model The results are applied to the problem of finding significance levels in nonlinear models.

An evolutionary hybrid optimization of MARS model in predicting settlement of shallow foundations on sandy soils

  • Luat, Nguyen-Vu;Nguyen, Van-Quang;Lee, Seunghye;Woo, Sungwoo;Lee, Kihak
    • Geomechanics and Engineering
    • /
    • v.21 no.6
    • /
    • pp.583-598
    • /
    • 2020
  • This study is attempted to propose a new hybrid artificial intelligence model called integrative genetic algorithm with multivariate adaptive regression splines (GA-MARS) for settlement prediction of shallow foundations on sandy soils. In this hybrid model, the evolution algorithm - Genetic Algorithm (GA) was used to search and optimize the hyperparameters of multivariate adaptive regression splines (MARS). For this purpose, a total of 180 experimental data were collected and analyzed from available researches with five-input variables including the bread of foundation (B), length to width (L/B), embedment ratio (Df/B), foundation net applied pressure (qnet), and average SPT blow count (NSPT). In further analysis, a new explicit formulation was derived from MARS and its accuracy was compared with four available formulae. The attained results indicated that the proposed GA-MARS model exhibited a more robust and better performance than the available methods.