• Title/Summary/Keyword: Regression Model Optimization

Search Result 334, Processing Time 0.028 seconds

Optimization of Regression model Using Genetic Algorithm and Desirability Function (유전 알고리즘과 호감도 함수를 이용한 회귀모델의 최적화)

  • 안홍락;이세헌
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.450-453
    • /
    • 1997
  • There are many studies about optimization using genetic algorithm and desirability function. It's very important to find the optimal value of something like response surface or regression model. In this study I ind~cate the problem using the old type desirability function, and suggest the new type desirabhty functton that can fix the problem better, and simulate the model. Then I'll suggest the form of desirability function to find the optimum value of response surfaces which are made by mean and standard deviation using genetic algorithm and new type desirability function.

  • PDF

Comparison of Sampling and Estimation Methods for Economic Optimization of Cumene Production Process (쿠멘 생산 공정의 경제성 최적화를 위한 샘플링 및 추정법의 비교)

  • Baek, Jong-Bae;Lee, Gibaek
    • Korean Chemical Engineering Research
    • /
    • v.52 no.5
    • /
    • pp.564-573
    • /
    • 2014
  • Economic optimization of cumene manufacturing process to produce cumene from benzene and propylene was studied. The chosen objective function was the operational profit per year that subtracted capital cost, utility cost, and reactants cost from product revenue and other benefit. The number of design variables of the optimization are 6. Matlab connected to and controlled Unisim Design to calculate operational profit with the given design variables. As the first step of the optimization, design variable points was sampled and operational profit was calculated by using Unisim Design. By using the sampled data, the estimation model to calculate the operational profit was constructed, and the optimization was performed on the estimation model. This study compared second order polynomial and support vector regression as the estimation method. As the sampling method, central composite design was compared with Hammersley sequence sampling. The optimization results showed that support vector regression and Hammersley sequence sampling were superior than second order polynomial and central composite design, respectively. The optimized operational profit was 17.96 MM$ per year, which was 12% higher than 16.04 MM$ of base case.

Ram Accelerator Optimization Using the Response Surface Method (반응면 기법을 이용한 램 가속기 최적설계에 관한 연구)

  • Jeon Yong-Hee;Jeon Kwon-Su;Lee Jae-Woo;Byun Yung-Hwan
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.159-165
    • /
    • 2000
  • In this paper, numerical study has been done for the improvement of the superdetonative ram accelerator performance and for the design optimization of the system. The objective function to optimize the premixture composition is the ram tube length required to accelerate projectile from initial velocity $V_o$ to target velocity $V_e$. The premixture is composed of $H_2,\;O_2,\;N_2$ and the mole numbers of these species are selected at design variables. RSM(Response Surface Methodology) which is widely used for the complex optimization problems is selected as the optimization technique. In particular, to improve the non-linearity of the response and to consider the accuracy and efficiency of the solution, design space stretching technique has been applied. Separate sub-optimization routine is introduced to determine the stretching position and clustering parameters which construct the optimum regression model. Two step optimization technique has been applied to obtain the optimal system. With the application of stretching technique, we can perform system optimization with a small number of experimental points, and construct precise regression model for highly non-linear domain. The error to compared with analysis result is only $0.01\%$ and it is demonstrated that present method can be applied more practical design optimization problems with many design variables.

  • PDF

Weighted LS-SVM Regression for Right Censored Data

  • Kim, Dae-Hak;Jeong, Hyeong-Chul
    • Communications for Statistical Applications and Methods
    • /
    • v.13 no.3
    • /
    • pp.765-776
    • /
    • 2006
  • In this paper we propose an estimation method on the regression model with randomly censored observations of the training data set. The weighted least squares support vector machine regression is applied for the regression function estimation by incorporating the weights assessed upon each observation in the optimization problem. Numerical examples are given to show the performance of the proposed estimation method.

Material Optimization of BIW for Minimizing Weight (경량화를 위한 BIW 소재 최적설계)

  • Jin, Sungwan;Park, Dohyun;Lee, Gabseong;Kim, Chang Won;Yang, Heui Won;Kim, Dae Seung;Choi, Dong-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.4
    • /
    • pp.16-22
    • /
    • 2013
  • In this study, we propose the method of optimally changing material of BIW for minimizing weight while satisfying vehicle requirements on static stiffness. First, we formulate a material selection optimization problem. Next, we establish the CAE procedure of evaluating static stiffness. Then, to enhance the efficiency of design work, we integrate and automate the established CAE procedure using a commercial process integration and design optimization (PIDO) tool, PIAnO. For effective optimization, we adopt the approach of metamodel based approximate optimization. As a sampling method, an orthogonal array (OA) is used for selecting sampling points. The response values are evaluated at the sampling points and then these response values are used to generate a metamodel of each response using the linear polynomial regression (PR) model. Using the linear PR model, optimization is carried out an evolutionary algorithm (EA) that can handle discrete design variables. Material optimization result reveals that the weight is reduced by 44.8% while satisfying all the design constraints.

Regression analysis and recursive identification of the regression model with unknown operational parameter variables, and its application to sequential design

  • Huang, Zhaoqing;Yang, Shiqiong;Sagara, Setsuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1204-1209
    • /
    • 1990
  • This paper offers the theory and method for regression analysis of the regression model with operational parameter variables based on the fundamentals of mathematical statistics. Regression coefficients are usually constants related to the problem of regression analysis. This paper considers that regression coefficients are not constants but the functions of some operational parameter variables. This is a kind of method of two-step fitting regression model. The second part of this paper considers the experimental step numbers as recursive variables, the recursive identification with unknown operational parameter variables, which includes two recursive variables, is deduced. Then the optimization and the recursive identification are combined to obtain the sequential experiment optimum design with operational parameter variables. This paper also offers a fast recursive algorithm for a large number of sequential experiments.

  • PDF

Approximate Optimization of High-speed Train Shape and Tunnel Condition to Reduce the Micro-pressure Wave (미기압파 저감을 위한 고속전철 열차-터널 조건의 근사최적설계)

  • Kim, Jung-Hui;Lee, Jong-Soo;Kwon, Hyeok-Bin
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1023-1028
    • /
    • 2004
  • A micro-pressure wave is generated by the high-speed train which enters a tunnel, and it causes explosive noise and vibration at the exit. It is known that train speed, train-tunnel area ratio, nose slenderness and nose shape mainly influence on generating micro-pressure wave. So it is required to minimize it by searching optimal values of such train shape factors and tunnel condition. In this study, response surface model, one of approximation models, is used to perform optimization effectively and analyze sensitivity of design variables. Owen's randomized orthogonal array and D-optimal Design are used to construct response surface model. In order to increase accuracy of model, stepwise regression is selected. Finally SQP(Sequential Quadratic Programming) optimization algorithm is used to minimize the maximum micro-pressure wave by using built approximation model.

  • PDF

Axial load prediction in double-skinned profiled steel composite walls using machine learning

  • G., Muthumari G;P. Vincent
    • Computers and Concrete
    • /
    • v.33 no.6
    • /
    • pp.739-754
    • /
    • 2024
  • This study presents an innovative AI-driven approach to assess the ultimate axial load in Double-Skinned Profiled Steel sheet Composite Walls (DPSCWs). Utilizing a dataset of 80 entries, seven input parameters were employed, and various AI techniques, including Linear Regression, Polynomial Regression, Support Vector Regression, Decision Tree Regression, Decision Tree with AdaBoost Regression, Random Forest Regression, Gradient Boost Regression Tree, Elastic Net Regression, Ridge Regression, and LASSO Regression, were evaluated. Decision Tree Regression and Random Forest Regression emerged as the most accurate models. The top three performing models were integrated into a hybrid approach, excelling in accurately estimating DPSCWs' ultimate axial load. This adaptable hybrid model outperforms traditional methods, reducing errors in complex scenarios. The validated Artificial Neural Network (ANN) model showcases less than 1% error, enhancing reliability. Correlation analysis highlights robust predictions, emphasizing the importance of steel sheet thickness. The study contributes insights for predicting DPSCW strength in civil engineering, suggesting optimization and database expansion. The research advances precise load capacity estimation, empowering engineers to enhance construction safety and explore further machine learning applications in structural engineering.

Meta-model Effects on Approximate Multi-objective Design Optimization of Vehicle Suspension Components (차량 현가 부품의 근사 다목적 설계 최적화에 대한 메타모델 영향도)

  • Song, Chang Yong;Choi, Ha-Young;Byon, Sung-Kwang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.3
    • /
    • pp.74-81
    • /
    • 2019
  • Herein, we performed a comparative study on approximate multi-objective design optimization, to realize a structural design to improve the weight and vibration performances of the knuckle - a car suspension component - considering various load conditions and vibration characteristics. In the approximate multi-objective optimization process, a regression meta-model was generated using the response surfaces method (RSM), while Kriging and back-propagation neural network (BPN) methods were applied for interpolation meta-modeling. The Pareto solutions, multi-objective optimal solutions, were derived using the non-dominated sorting genetic algorithm (NSGA-II). In terms of the knuckle design considered in this study, the characteristics and influence of the meta-model on multi-objective optimization were reviewed through a comparison of the approximate optimization results with the meta-models and the actual optimization.

Optimization of the Elastic Joint of Train Bogie Using by Response Surface Model (반응표면모델에 의한 철도 차량 대차의 탄성조인트 최적설계)

  • Park, Chan-Gyeong;Lee, Gwang-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.661-666
    • /
    • 2000
  • Optimization of the elastic joint of train is performed according to the minimization of ten responses which represent driving safety and ride comfort of train and analyzed by using the each response se surface model from stochastic design of experiments. After the each response surface model is constructed, the main effect and sensitivity analyses are successfully performed by 2nd order approximated regression model as described in this paper. We can get the optimal solutions using by nonlinear programming method such as simplex or interval optimization algorithms. The response surface models and the optimization algorithms are used together to obtain the optimal design of the elastic joint of train. the ten 2nd order polynomial response surface models of the three translational stiffness of the elastic joint (design factors) are constructed by using CCD(Central Composite Design) and the multi-objective optimization is also performed by applying min-max and distance minimization techniques of relative target deviation.