• Title/Summary/Keyword: Regions of Low-to-Moderate Seismicity

Search Result 32, Processing Time 0.028 seconds

Investigation of Adaptability of Smart Base Isolation System for Spacial Structures in Regions of Low-to-Moderate Seismicity (중약진지역 대공간 구조물에 대한 스마트 면진시스템의 적용성 검토)

  • Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.4
    • /
    • pp.109-119
    • /
    • 2011
  • To date, a smart base isolation system has been developed in high seismicity region such as Japan, USA etc. Smart base isolation systems developed for structures in high seismicity region cannot directly applied to structures in regions of low-to-moderate seismicity such as Korea. Therefore, problems that occur by applying the smart base isolation system developed for the structures in high seismicity region to the structures in regions of low-to-moderate seismicity have been investigated in this study. To this end, a spacial arch structure was used as an example structure and MR dampers and low damping elastomeric bearings were used to compose a smart base isolation system. Artificial earthquakes were used for ground motions in regions of high and low-to-moderate seismicity. Based on numerical simulation results, it has been known that the capacity of smart base isolation system for the regions of low-to-moderate seismicity should be carefully designed because the base isolation effects of the smart base isolation system for high seismicity region is deteriorated when it is applied to the structures in regions of low-to-moderate seismicity.

Seismic Design in Low or Moderate Seismicity Regions : Suggested A, pp.oaches

  • Kim, Jae-Kwan;Kim, Ick-Hyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.3
    • /
    • pp.99-109
    • /
    • 1998
  • Korea is located in either low of moderate seismicity continental region. It is realized that the design codes and underlying design concept of high seismicity region may not be a, pp.opriate to low and moderate seismicity regions. The aim of this paper is to search seismic design concept that is deemed to be a, pp.opriate to low and moderate seismicity regions. To this end, the seismicity of Korea will be introduce first and important aspects of seismic design in moderate seismicity region will be discussed. The two-level code system that is going to be adopted in the future seismic regulations of Korea will be introduced.

  • PDF

Seismic Design of Structures in Low Seismicity Regions

  • Lee, Dong-Guen;Cho, So-Hoon;Ko, Hyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.4
    • /
    • pp.53-63
    • /
    • 2007
  • Seismic design codes are developed mainly based on the observation of the behavior of structures in the high seismicity regions where structures may experience significant amount of inelastic deformations and major earthquakes may result in structural damages in a vast area. Therefore, seismic loads are reduced in current design codes for building structures using response modification factors which depend on the ductility capacity and overstrength of a structural system. However, structures in low seismicity regions, subjected to a minor earthquake, will behave almost elastically because of the larger overstrength of structures in low seismicity regions such as Korea. Structures in low seismicity regions may have longer periods since they are designed to smaller seismic loads and main target of design will be minor or moderate earthquakes occurring nearby. Ground accelerations recorded at stations near the epicenter may have somewhat different response spectra from those of distant station records. Therefore, it is necessary to verify if the seismic design methods based on high seismicity would he applicable to low seismicity regions. In this study, the adequacy of design spectra, period estimation and response modification factors are discussed for the seismic design in low seismicity regions. The response modification factors are verified based on the ductility and overstrength of building structures estimated from the farce-displacement relationship. For the same response modification factor, the ductility demand in low seismicity regions may be smaller than that of high seismicity regions because the overstrength of structures may be larger in low seismicity regions. The ductility demands in example structures designed to UBC97 for high, moderate and low seismicity regions were compared. Demands of plastic rotation in connections were much lower in low seismicity regions compared to those of high seismicity regions when the structures are designed with the same response modification factor. Therefore, in low seismicity regions, it would be not required to use connection details with large ductility capacity even for structures designed with a large response modification factor.

Limited Ductility Seismic Design in Moderate Seismicity Regions (중진지역에서의 한정연성도 내진설계)

  • 김재관
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.75-84
    • /
    • 1998
  • Korea is located in either low or moderate seismicity continental region. It is realized that design codes and underlying design concepts of high seismicity region may not be appropriate to low or moderate seismicity region. In this paper, test results on the seismic response of structures without seismic detailing are reexamined and compared with numerical analysis results. The seismic design concept based on limited ductility is proposed as an alternative seismic design approach in moderate seismicity regions.

  • PDF

Investigation of Adaptability of Smart Top-Story Isolation System to Structures in Regions of Low-to-Moderate Seismicity (스마트 최상층 면진시스템의 중약진지역 적용성 평가)

  • Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.4
    • /
    • pp.71-80
    • /
    • 2012
  • Because a smart isolation system cannot be used as a base isolation system for tall buildings, top-story or mid-story isolation systems are required. In this study, adaptability of a smart top-story isolation system for reduction of seismic responses of tall buildings in regions of low-to-moderate seismicity has been investigated. To this end, 20-story example building structure was selected and an MR damper and low damping elastomeric bearings were used to compose a smart base isolation system. Artificial earthquakes generated based on design spectrum of low-to-moderate seismicity regions are used for structural analyses. Based on numerical simulation results, it has been shown that a smart top-story isolation system can effectively reduce both structural responses and isolation story drifts of the building structure in low-to-moderate seismicity regions in comparison with a passive top-story isolation system.

Study of Characteristics of Smart Base Isolation System with MR Damper for Regions of Low-to-Moderate Seismicity (중약진지역에 대한 MR 감쇠기로 구성된 스마트 면진시스템의 특성연구)

  • Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.3
    • /
    • pp.325-336
    • /
    • 2012
  • Smart base isolation systems developed for structures in high seismic regions cannot be directly applied to structures in regions of low-to-moderate seismicity, such as Korea. Therefore, the problems that occur by applying the smart base isolation system for high seismic regions to the structures in regions of low-to-moderate seismicity have been investigated in this study. To this end, a five-story building is used as an example, and an MR damper and low damping elastomeric bearings were used to compose a smart base isolation system. Artificial earthquakes are simulated for ground motions in regions of high and low-to-moderate seismicity. Based on numerical simulation results, the MR damper capacity that can provide good control is quite different among regions of high and low-to-moderate seismicity. Moreover, it is noted that the properties of a smart base isolation system for the regions of low-to-moderate seismicity should be carefully designed because the base isolation effects of the smart base isolation system for high seismic regions deteriorate when it is applied to the structures in regions of low-to-moderate seismicity.

Seismic Design Strategies of Multi-Span Continuous Bridges in Moderate Seismicity Region (중진지역에서의 다경간연속교의 내진설계 방향)

  • 김재관;김익현
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.292-299
    • /
    • 2002
  • It has been realized that the design codes and underlying design concept of high seismicity region may not be appropriate to low and moderate seismicity regions. The aim of this paper is to search seismic design strategies that are appropriate to moderate seismicity regions. The characteristics of seismic hazard in moderate seismicity regions are reviewed. The seismic responses of multi-span continuous bridges subjected to the ground shaking of moderate intensity are examined. The present code on seismic design of bridges is briefly reviewed. Based on these observations, design principles and strategies appropriate to the moderate seismicity regions are proposed for the multi-span continuous bridge

  • PDF

Progress in Seismic Design Concept in Moderate Seismicity regions (중약진 지역에서의 내진설계 개념의 발전동향)

  • 장승필
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.04a
    • /
    • pp.217-222
    • /
    • 1999
  • Seismic design in low to moderate seismic regions has to be based on the characteristics of seismic risk ground motion and structural response in that region. The characteristics of seismic hazard in low to moderate seismic regions are reviewed briefly. The recent findings on the dynamic behavior subjected to the moderate intensity level of ground motion are summarized. The seismic design considerations in Easterm America China Australia Thailand and Hong Kong will be introduced, . The effort to adopt the limited ductility design in low to moderate seismicity regions will be reported. Finally research works that are required for the implementation of the limited design concept will be proposed.

  • PDF

Progress in Seismic Design Concept in Moderate Seismicity Regions (중약진 지역에서의 내진설계 개념의 발전동향)

  • Jang, Seung-Pil;Kim, Jae-Gwan
    • 도로교통
    • /
    • s.76
    • /
    • pp.2-7
    • /
    • 1999
  • Seismic design in low to moderate seismic regions has to be based on the characteristics of seismic risk, ground motion and structural response in that region. The characteristics of seismic hazard in low to moderate seismic regions are reviewed briefly. The recent findings on the dynamic behavior subjected to the moderate intensity level of ground motion are summarized. The seismic design considerations in Eastern America, China, Australia, Thailand and Hong Kong will be introduced. The effort to adopt the limited ductility design in low to moderate seismicity regions will be reported. Finally research works that are required for the implementation of the limited design concept will be proposed.

Seismic Design and Test of Viscoelastic Dampers in regions of Moderate Seismicity (중진 지역에서의 점탄성 감쇠기설계 및 제진 성능 실험)

  • 민경원
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.359-366
    • /
    • 1999
  • This paper is a study on the seismic design and test of viscoelastic dampers in regions of moderate seismicity. First moderate seismic waves are generated with measured strong seismic data based on the theory of effective peak acceleration. Then their response spectrums are compared each other to estimate the required damping to attenuate the vibration. As relatively smaller damping is required in the regions of moderate seismicity than in the regions of strong seismicity proper viscoelastic dampers can be designed according to the estimated damping. Finally a test building model is designed and the viscoelastic dampers are installed for the experimental study under moderate and strong earthquakes, It is found that viscoelastic dampers with low damping capacity developed in this study are enough to reduce the building response in regions of moderate seismicity.

  • PDF