Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2021.05a
/
pp.493-495
/
2021
Local festivals, an intangible tourism resource, contribute to the development of the local tourism industry by developing specialized products and tourism products to develop the region. With a very high interest in festivals in each of these regions, much attention is paid to data analysis on what issues and improvements will be made after the festival. In this study, for festivals in the Danyang-gun area, where many people visit every year among festivals in various regions, the issue of negative or positive relations is visually identified by collecting and analyzing unstructured data, which is an online medium, free from the difficulty of collecting commercial data This study was conducted to derive.
Korean Journal of Computational Design and Engineering
/
v.2
no.3
/
pp.175-185
/
1997
Given the widespread use of the Finite Element Method in strength analysis, automatic mesh generation is an important component in the computer-aided design of parts and assemblies. For a given resolution of geometric accuracy, the purpose of mesh generators is to discretize the continuous model of a part within this error limit. Sticking to this condition often produces many small elements around small features in spite that these regions are usually of little interest and computer resources are thus wasted. Therefore, it is desirable to selectively suppress small features from the model before discretization. This can be achieved by low-pass filtering a CAD model. A spatial function of one dimension higher than the model of interest is represented using the Fourier basis functions and the region where the function yields a value greater than a prescribed value is considered as the extent of a shape. Subsequently, the spatial function is low-pass filtered, yielding a shape without the small features. As an undesirable effect to this operation, all sharp corners are rounded. Preservation of sharp corners is important since stress concentrations might occur there. This is why the LPF (low-pass filtered) model can not be directly used. Instead, the distances of the boundary elements of the original shape from the LPF model are calculated and those that are far from the LPF model are identified and removed. It is shown that the number of mesh elements generated on the simplified model is much less than that of the original model.
Building footprint extraction is an active topic in the domain of remote sensing, since buildings are a fundamental unit of urban areas. Deep convolutional neural networks successfully perform footprint extraction from optical satellite images. However, semantic segmentation produces coarse results in the output, such as blurred and rounded boundaries, which are caused by the use of convolutional layers with large receptive fields and pooling layers. The objective of this study is to generate visually enhanced building objects by directly extracting the vertices of individual buildings by combining instance segmentation and keypoint detection. The target keypoints in building extraction are defined as points of interest based on the local image gradient direction, that is, the vertices of a building polygon. The proposed framework follows a two-stage, top-down approach that is divided into object detection and keypoint estimation. Keypoints between instances are distinguished by merging the rough segmentation masks and the local features of regions of interest. A building polygon is created by grouping the predicted keypoints through a simple geometric method. Our model achieved an F1-score of 0.650 with an mIoU of 62.6 for building footprint extraction using the OpenCitesAI dataset. The results demonstrated that the proposed framework using keypoint estimation exhibited better segmentation performance when compared with Mask R-CNN in terms of both qualitative and quantitative results.
Physical and mechanical properties of rocks are of interest in many fields, including materials science, petrophysics, geophysics and geotechnical engineering. Uniaxial compressive strength UCS is one of the key mechanical properties, while density and porosity are important physical parameters for the characterization of rocks. The economic interest of carbonate rocks is very important in chemical or biological procedures and in the field of construction. Carbonate rocks exploitation depends on their quality and their physical, chemical and geotechnical characteristics. A fast, economic and reliable technique would be an evolutionary advance in the exploration of carbonate rocks. This paper discusses the ability of ultrasonic wave velocity to evaluate some mechanical and physical parameters within carbonate rocks (collected from different regions within Tunisia). The ultrasonic technique was used to establish empirical correlations allowing the estimation of UCS values, the density and the porosity of carbonate rocks. The results illustrated the behavior of ultrasonic pulse velocity as a function of the applied stress. The main output of the work is the confirmation that ultrasonic velocity can be effectively used as a simple and economical non-destructive method for a preliminary prediction of mechanical behavior and physical properties of rocks.
Journal of the Korea Institute of Information and Communication Engineering
/
v.18
no.3
/
pp.687-696
/
2014
This paper presents a semantic object extraction method using user's stroke input, color, and depth information. It is supposed that a semantically meaningful object is surrounded with a few strokes from a user, and has similar depths all over the object. In the proposed method, deciding the region of interest (ROI) is based on the stroke input, and the semantically meaningful object is extracted by using color and depth information. Specifically, the proposed method consists of two steps. The first step is over-segmentation inside the ROI using color and depth information. The second step is semantically meaningful object extraction where over-segmented regions are classified into the object region and the background region according to the depth of each region. In the over-segmentation step, we propose a new marker extraction method where there are two propositions, i.e. an adaptive thresholding scheme to maximize the number of the segmented regions and an adaptive weighting scheme for color and depth components in computation of the morphological gradients that is required in the marker extraction. In the semantically meaningful object extraction, we classify over-segmented regions into the object region and the background region in order of the boundary regions to the inner regions, the average depth of each region being compared to the average depth of all regions classified into the object region. In experimental results, we demonstrate that the proposed method yields reasonable object extraction results.
Lee, Dae Yeol;Pinto, Guilherme O.;Hemami, Sheila S.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2013.11a
/
pp.165-168
/
2013
Image distortions, such as quantization errors, can have a severe negative impact on the performance of computer vision algorithms, and, more specifically, on object detection algorithms. State-of-the-art implementations of the JPEG-2000 image coder commonly allocate the available bits to minimize the Mean-Squared-Error (MSE) distortion between the original image and the resulting compressed image. However, considering that some state-of-the-art object detection methods use the gradient information as the main image feature, an improved object detection performance is expected for JPEG-2000 image coders that allocate the available bits to minimize the distortions on the gradient content. Accordingly, in this work, the Gradient Mean-Squared-Error (GMSE) based JPEG-2000 coder presents an improved object detection performance over the MSE based JPEG-2000 image coder when the object of interest is located at the same spatial location of the image regions with the strongest gradients and also for high bit-rates. For low bit-rates (e.g. 0.07bpp), the GMSE based JPEG-2000 image coder becomes overly selective in choosing the gradients to preserve, and, as a result, there is a greater chance of mismatch between the spatial locations of the gradients that the coder is trying to preserve and the spatial locations of the objects of interest.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2006.05a
/
pp.796-799
/
2006
This paper presents a new method for automatic detection of skew in a document image using mathematical morphology. To speed up processing, we use reduced image but it still requires long time to estimate the skew angle so the proposed method works with region of interest, not with whole image. Character strings are connected by using morphological closing operation and a component labeling is used to select region of interest. The method considers the lowermost pixels of characters in candidate regions in the binary image of original document image. Experimental results shows that the proposed method is extremely fast and robust as well as independent of script forms.
In the past decade, deep learning has been applied to various medical image analysis tasks. Skeletal bone age estimation is clinically important as it can help prevent age-related illness and pave the way for new anti-aging therapies. Recent research has applied deep learning techniques to the task of bone age assessment and achieved positive results. In this paper, we propose a bone age prediction method using a deep convolutional neural network. Specifically, we first train a classification model that automatically localizes the most discriminative region of an image and crops it from the original image. The regions of interest are then used as input for a regression model to estimate the age of the patient. The experiments are conducted on a whole-body scintigraphy dataset that was collected by Chonnam National University Hwasun Hospital. The experimental results illustrate the potential of our proposed method, which has a mean absolute error of 3.35 years. Our proposed framework can be used as a robust supporting tool for clinicians to prevent age-related diseases.
Kim Seung Hyun;Kim Jae Hyun;Park Jung Whan;Ko Tae Jo
Journal of the Korean Society for Precision Engineering
/
v.21
no.12
/
pp.100-108
/
2004
In reverse engineering, data acquisition methodology can generally be categorized into contacting and non-contacting types. Recently, researches on hybrid or sensor fusion of the two types have been increasing. In addition, efficient construction of a geometric model from the measurement data is required, where considerable amount of user interaction to classify and localize regions of interest is inevitable. Our research focuses on the classification of each bounded region into a pre-defined feature shape fer a hybrid measuring scheme, where the overall procedures are described as fellows. Firstly, the physical model is digitized by a non-contacting laser scanner which rapidly provides cloud-of-points data. Secondly, the overall digitized data are approximated to a z-map model. Each bounding curve of a region of interest (featured area) can be 1.aced out based on our previous research. Then each confined area is systematically classified into one of the pre-defined feature types such as floor, wall, strip or volume, followed by a more accurate measuring step via a contacting probe. Assigned to each feature is a specific digitizing path topology which may reflect its own geometric character. The research can play an important role in minimizing user interaction at the stage of digitizing path planning.
Daneshmandpour, Navid;Danyali, Habibollah;Helfroush, Mohammad Sadegh
ETRI Journal
/
v.43
no.1
/
pp.109-119
/
2021
Self-recovery is a tamper-detection and image recovery methods based on data hiding. It generates two types of data and embeds them into the original image: authentication data for tamper detection and reference data for image recovery. In this paper, a region-based scalable self-recovery (RSS) method is proposed for salient-object images. As the images consist of two main regions, the region of interest (ROI) and the region of non-interest (RONI), the proposed method is aimed at achieving higher reconstruction quality for the ROI. Moreover, tamper tolerability is improved by using scalable recovery. In the RSS method, separate reference data are generated for the ROI and RONI. Initially, two compressed bitstreams at different rates are generated using the embedded zero-block coding source encoder. Subsequently, each bitstream is divided into several parts, which are protected through various redundancy rates, using the Reed-Solomon channel encoder. The proposed method is tested on 10 000 salient-object images from the MSRA database. The results show that the RSS method, compared to related methods, improves reconstruction quality and tamper tolerability by approximately 30% and 15%, respectively.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.