• Title/Summary/Keyword: Regions of Interest

Search Result 611, Processing Time 0.027 seconds

Analytical Research to Identify Issues Using Online Media Related to Festivals (축제 관련 온라인 매체를 활용한 이슈 도출 분석연구)

  • Lee, Jeongwon;Lee, Choong Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.493-495
    • /
    • 2021
  • Local festivals, an intangible tourism resource, contribute to the development of the local tourism industry by developing specialized products and tourism products to develop the region. With a very high interest in festivals in each of these regions, much attention is paid to data analysis on what issues and improvements will be made after the festival. In this study, for festivals in the Danyang-gun area, where many people visit every year among festivals in various regions, the issue of negative or positive relations is visually identified by collecting and analyzing unstructured data, which is an online medium, free from the difficulty of collecting commercial data This study was conducted to derive.

  • PDF

Geometric Detail Suppression for the Generation of Efficient Finite Elements (효율적 유한요소 생성을 위한 미소 기하 특징 소거)

  • 이용구;이건우
    • Korean Journal of Computational Design and Engineering
    • /
    • v.2 no.3
    • /
    • pp.175-185
    • /
    • 1997
  • Given the widespread use of the Finite Element Method in strength analysis, automatic mesh generation is an important component in the computer-aided design of parts and assemblies. For a given resolution of geometric accuracy, the purpose of mesh generators is to discretize the continuous model of a part within this error limit. Sticking to this condition often produces many small elements around small features in spite that these regions are usually of little interest and computer resources are thus wasted. Therefore, it is desirable to selectively suppress small features from the model before discretization. This can be achieved by low-pass filtering a CAD model. A spatial function of one dimension higher than the model of interest is represented using the Fourier basis functions and the region where the function yields a value greater than a prescribed value is considered as the extent of a shape. Subsequently, the spatial function is low-pass filtered, yielding a shape without the small features. As an undesirable effect to this operation, all sharp corners are rounded. Preservation of sharp corners is important since stress concentrations might occur there. This is why the LPF (low-pass filtered) model can not be directly used. Instead, the distances of the boundary elements of the original shape from the LPF model are calculated and those that are far from the LPF model are identified and removed. It is shown that the number of mesh elements generated on the simplified model is much less than that of the original model.

  • PDF

Keypoint-based Deep Learning Approach for Building Footprint Extraction Using Aerial Images

  • Jeong, Doyoung;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.1
    • /
    • pp.111-122
    • /
    • 2021
  • Building footprint extraction is an active topic in the domain of remote sensing, since buildings are a fundamental unit of urban areas. Deep convolutional neural networks successfully perform footprint extraction from optical satellite images. However, semantic segmentation produces coarse results in the output, such as blurred and rounded boundaries, which are caused by the use of convolutional layers with large receptive fields and pooling layers. The objective of this study is to generate visually enhanced building objects by directly extracting the vertices of individual buildings by combining instance segmentation and keypoint detection. The target keypoints in building extraction are defined as points of interest based on the local image gradient direction, that is, the vertices of a building polygon. The proposed framework follows a two-stage, top-down approach that is divided into object detection and keypoint estimation. Keypoints between instances are distinguished by merging the rough segmentation masks and the local features of regions of interest. A building polygon is created by grouping the predicted keypoints through a simple geometric method. Our model achieved an F1-score of 0.650 with an mIoU of 62.6 for building footprint extraction using the OpenCitesAI dataset. The results demonstrated that the proposed framework using keypoint estimation exhibited better segmentation performance when compared with Mask R-CNN in terms of both qualitative and quantitative results.

Ultrasonic velocity as a tool for mechanical and physical parameters prediction within carbonate rocks

  • Abdelhedi, Mohamed;Aloui, Monia;Mnif, Thameur;Abbes, Chedly
    • Geomechanics and Engineering
    • /
    • v.13 no.3
    • /
    • pp.371-384
    • /
    • 2017
  • Physical and mechanical properties of rocks are of interest in many fields, including materials science, petrophysics, geophysics and geotechnical engineering. Uniaxial compressive strength UCS is one of the key mechanical properties, while density and porosity are important physical parameters for the characterization of rocks. The economic interest of carbonate rocks is very important in chemical or biological procedures and in the field of construction. Carbonate rocks exploitation depends on their quality and their physical, chemical and geotechnical characteristics. A fast, economic and reliable technique would be an evolutionary advance in the exploration of carbonate rocks. This paper discusses the ability of ultrasonic wave velocity to evaluate some mechanical and physical parameters within carbonate rocks (collected from different regions within Tunisia). The ultrasonic technique was used to establish empirical correlations allowing the estimation of UCS values, the density and the porosity of carbonate rocks. The results illustrated the behavior of ultrasonic pulse velocity as a function of the applied stress. The main output of the work is the confirmation that ultrasonic velocity can be effectively used as a simple and economical non-destructive method for a preliminary prediction of mechanical behavior and physical properties of rocks.

Color-Depth Combined Semantic Image Segmentation Method (색상과 깊이정보를 융합한 의미론적 영상 분할 방법)

  • Kim, Man-Joung;Kang, Hyun-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.3
    • /
    • pp.687-696
    • /
    • 2014
  • This paper presents a semantic object extraction method using user's stroke input, color, and depth information. It is supposed that a semantically meaningful object is surrounded with a few strokes from a user, and has similar depths all over the object. In the proposed method, deciding the region of interest (ROI) is based on the stroke input, and the semantically meaningful object is extracted by using color and depth information. Specifically, the proposed method consists of two steps. The first step is over-segmentation inside the ROI using color and depth information. The second step is semantically meaningful object extraction where over-segmented regions are classified into the object region and the background region according to the depth of each region. In the over-segmentation step, we propose a new marker extraction method where there are two propositions, i.e. an adaptive thresholding scheme to maximize the number of the segmented regions and an adaptive weighting scheme for color and depth components in computation of the morphological gradients that is required in the marker extraction. In the semantically meaningful object extraction, we classify over-segmented regions into the object region and the background region in order of the boundary regions to the inner regions, the average depth of each region being compared to the average depth of all regions classified into the object region. In experimental results, we demonstrate that the proposed method yields reasonable object extraction results.

JPEG-2000 Gradient-Based Coding: An Application To Object Detection

  • Lee, Dae Yeol;Pinto, Guilherme O.;Hemami, Sheila S.
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2013.11a
    • /
    • pp.165-168
    • /
    • 2013
  • Image distortions, such as quantization errors, can have a severe negative impact on the performance of computer vision algorithms, and, more specifically, on object detection algorithms. State-of-the-art implementations of the JPEG-2000 image coder commonly allocate the available bits to minimize the Mean-Squared-Error (MSE) distortion between the original image and the resulting compressed image. However, considering that some state-of-the-art object detection methods use the gradient information as the main image feature, an improved object detection performance is expected for JPEG-2000 image coders that allocate the available bits to minimize the distortions on the gradient content. Accordingly, in this work, the Gradient Mean-Squared-Error (GMSE) based JPEG-2000 coder presents an improved object detection performance over the MSE based JPEG-2000 image coder when the object of interest is located at the same spatial location of the image regions with the strongest gradients and also for high bit-rates. For low bit-rates (e.g. 0.07bpp), the GMSE based JPEG-2000 image coder becomes overly selective in choosing the gradients to preserve, and, as a result, there is a greater chance of mismatch between the spatial locations of the gradients that the coder is trying to preserve and the spatial locations of the objects of interest.

  • PDF

Fast Skew Detection of Document Image Using Morphological Operation (모폴로지 연산을 이용한 문서 이미지의 고속 기울기 검출 기법)

  • Shin Myoung-Jin;Kim Do-Hyun;Cha Eui-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.796-799
    • /
    • 2006
  • This paper presents a new method for automatic detection of skew in a document image using mathematical morphology. To speed up processing, we use reduced image but it still requires long time to estimate the skew angle so the proposed method works with region of interest, not with whole image. Character strings are connected by using morphological closing operation and a component labeling is used to select region of interest. The method considers the lowermost pixels of characters in candidate regions in the binary image of original document image. Experimental results shows that the proposed method is extremely fast and robust as well as independent of script forms.

  • PDF

Region of Interest Localization for Bone Age Estimation Using Whole-Body Bone Scintigraphy

  • Do, Thanh-Cong;Yang, Hyung Jeong;Kim, Soo Hyung;Lee, Guee Sang;Kang, Sae Ryung;Min, Jung Joon
    • Smart Media Journal
    • /
    • v.10 no.2
    • /
    • pp.22-29
    • /
    • 2021
  • In the past decade, deep learning has been applied to various medical image analysis tasks. Skeletal bone age estimation is clinically important as it can help prevent age-related illness and pave the way for new anti-aging therapies. Recent research has applied deep learning techniques to the task of bone age assessment and achieved positive results. In this paper, we propose a bone age prediction method using a deep convolutional neural network. Specifically, we first train a classification model that automatically localizes the most discriminative region of an image and crops it from the original image. The regions of interest are then used as input for a regression model to estimate the age of the patient. The experiments are conducted on a whole-body scintigraphy dataset that was collected by Chonnam National University Hwasun Hospital. The experimental results illustrate the potential of our proposed method, which has a mean absolute error of 3.35 years. Our proposed framework can be used as a robust supporting tool for clinicians to prevent age-related diseases.

Feature Recognition for Digitizing Path Generation in Reverse Engineering (역공학에서 측정경로생성을 위한 특징형상 인식)

  • Kim Seung Hyun;Kim Jae Hyun;Park Jung Whan;Ko Tae Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.12
    • /
    • pp.100-108
    • /
    • 2004
  • In reverse engineering, data acquisition methodology can generally be categorized into contacting and non-contacting types. Recently, researches on hybrid or sensor fusion of the two types have been increasing. In addition, efficient construction of a geometric model from the measurement data is required, where considerable amount of user interaction to classify and localize regions of interest is inevitable. Our research focuses on the classification of each bounded region into a pre-defined feature shape fer a hybrid measuring scheme, where the overall procedures are described as fellows. Firstly, the physical model is digitized by a non-contacting laser scanner which rapidly provides cloud-of-points data. Secondly, the overall digitized data are approximated to a z-map model. Each bounding curve of a region of interest (featured area) can be 1.aced out based on our previous research. Then each confined area is systematically classified into one of the pre-defined feature types such as floor, wall, strip or volume, followed by a more accurate measuring step via a contacting probe. Assigned to each feature is a specific digitizing path topology which may reflect its own geometric character. The research can play an important role in minimizing user interaction at the stage of digitizing path planning.

Region-based scalable self-recovery for salient-object images

  • Daneshmandpour, Navid;Danyali, Habibollah;Helfroush, Mohammad Sadegh
    • ETRI Journal
    • /
    • v.43 no.1
    • /
    • pp.109-119
    • /
    • 2021
  • Self-recovery is a tamper-detection and image recovery methods based on data hiding. It generates two types of data and embeds them into the original image: authentication data for tamper detection and reference data for image recovery. In this paper, a region-based scalable self-recovery (RSS) method is proposed for salient-object images. As the images consist of two main regions, the region of interest (ROI) and the region of non-interest (RONI), the proposed method is aimed at achieving higher reconstruction quality for the ROI. Moreover, tamper tolerability is improved by using scalable recovery. In the RSS method, separate reference data are generated for the ROI and RONI. Initially, two compressed bitstreams at different rates are generated using the embedded zero-block coding source encoder. Subsequently, each bitstream is divided into several parts, which are protected through various redundancy rates, using the Reed-Solomon channel encoder. The proposed method is tested on 10 000 salient-object images from the MSRA database. The results show that the RSS method, compared to related methods, improves reconstruction quality and tamper tolerability by approximately 30% and 15%, respectively.