• Title/Summary/Keyword: Regional Production Data

Search Result 193, Processing Time 0.029 seconds

A Study on The Iron Monument in The era of Joseon Dynasty (조선시대(朝鮮時代) 철비(鐵碑)의 조영(造營) 연구(硏究))

  • Hong, Dai Han
    • The Korean Journal of Archival Studies
    • /
    • no.24
    • /
    • pp.215-274
    • /
    • 2010
  • Iron-making industries of the country, regardless of age has been the focus. This makes the iron production technology and production techniques that result in increased economic activity and because of the central charge. Therefore, the social development of ancient iron-making technology is based on phase-sensitive. Modern steel making up the monopoly of the country's target under the strict control of production, distribution was. It is essential to produce iron weapons was a threat is because you can keep the throne in the hands of the forces that can cause side effects when I went was to block. This study created a rail Cholbi(iron monument) and the regional distribution pattern of the production, construction background, looked on. Cholbi(iron monument) for the production and recording "the Annals of the Joseon Dynasty" often appear in history books and many academic interests, but was off target. Compared to a stone monument that was not generally as well as the Japanese colonial period and over the course of modernization destroyed, damaged a lot of cases the cause may be found in front. Cholbi(iron monument), except for the gravestones of the Joseon Dynasty monument erected in honor of virtue, as an example of content that dominated a packman business, founding of the school and confirmed that a few were built as a special purpose. Cholbi(iron monument) compared to the production technology or the cost of the monument's difficulty in financing follows. Therefore Cholbi(iron monument) the establishment of the Joseon Dynasty through the background of the economic situation and the local government can look. And iron technology began complaining about the object of history, economic conditions, with the change of season has been a change in people's consciousness tells you. Important data of ancient history as an epigraph that has been as important, the Middle Ages to modern times ranging from newly born to the time Cholbi(iron monument) in the development of the country's documentary subject to change should have been brought. Based on these discussions changes the identity of the hero monument and production inspector, review of production through the Joseon Dynasty period Cholbi (iron monument) contemplated the significance is reflected in production.

A Study about Regional Water Footprint of Rice Production in Agriculture Industry (쌀 농업에 대한 지역별 물 발자국 산정에 관한 연구)

  • Kim, Junbeum;Kang, Hun;Shin, Sang Min
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.11
    • /
    • pp.827-834
    • /
    • 2013
  • The water footprint of product and service is the total volume of freshwater consumed, directly and indirectly, in the life cycle of a product and service. Up to date, water consumption data for industries and products were not well quantified and developed. Especially it is important to construct for agriculture industry which consumes lots of water. In this study, by using Cropwat 8.0 model, we tried to evaluate regionalized water consumption related with rice production in agriculture industry in eight regions (Gangwon, Gyeongi, Gyeongbuk, Gyeongnam, Jeonnam, Jeonbuk, Chungnam, Chungbuk). As a result, Gyeongbuk region has the lowest water consumption in rice production, which is $1,356.68m^3/ton$, on the other hand, Jeonnam region has the highest water consumption ($1,669.54m^3/ton$). By using the average indirect water consumption ($1,487.87m^3/ton$) of eight regions and direct water consumption, the total water footprint for the rice amount of rice bowl size (130 g), which is 193.6 L was calculated. Based on this research approach, we should develop water footprint database of all agriculture products and expand to other industrial sectors.

Socio-Economic Impacts of an Unscheduled Event: A Case in Korea (재해발생으로 인한 사회-경제적 영향분석: 우리나라 사례를 중심으로)

  • Lee, Seong-Kwan;Kang, Seung-Lim;Kim, Tschang-Ho John
    • International Journal of Highway Engineering
    • /
    • v.11 no.1
    • /
    • pp.117-126
    • /
    • 2009
  • Total number of recorded earthquakes in Korea is more than 2,000 of which 48 were catastrophic. The impacts from infrastructure damage due to an earthquake to production facilities and lifelines may spread across boundaries of several regions via import-export relationships and can bring serious economic impact to other regions. The economic impacts from unscheduled events stem not only from the damage and direct losses, but also from the indirect losses during the recovery and reconstruction periods. To recover and reconstruct the facilities and lifelines damaged by unexpected events through investment or government financial aid, both the direct and the indirect economic impacts from an event need to be measured in regional and interregional contexts. Direct economic impact is the direct change of production and demand due to the disruption of production facilities and lifelines from an unexpected event, and indirect economic impact is the change in other sectors due to inter-industry relationships. The purpose of the paper is to analyze various economic impacts of an earthquake, especially impacts on transportation networks in Korea. We collected spatial and economic data from Korea, and analyzed and estimated final demand loss and commodity flows from the unscheduled event.

  • PDF

Automatic Extraction of the Land Readjustment Paddy for High-level Land Cover Classification (토지 피복 세분류를 위한 경지 정리 논 자동 추출)

  • Yeom, Jun Ho;Kim, Yong Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.5
    • /
    • pp.443-450
    • /
    • 2014
  • To fulfill the recent increasement in the public and private demands for various spatial data, the central and local governments started to produce those data. The low-level land cover map has been produced since 2000, yet the production of high-level land covered map has started later in 2010, and recently, a few regions was completed recently. Although many studies have been carried to improve the quality of land that covered in the map, most of them have been focused on the low-level and mid-level classifications. For that reason, the study for high-level classification is still insufficient. Therefore, in this study, we suggested the automatic extraction of land readjustment for paddy land that updated in the mid-level land mapping. At the study, the RapidEye satellite images, which consider efficient to apply in the agricultural field, were used, and the high pass filtering emphasized the outline of paddy field. Also, the binary images of the paddy outlines were generated from the Otsu thresholding. The boundary information of paddy field was extracted from the image-to-map registrations and masking of paddy land cover. Lastly, the snapped edges were linked, as well as the linear features of paddy outlines were extracted by the regional Hough line extraction. The start and end points that were close to each other were linked to complete the paddy field outlines. In fact, the boundary of readjusted paddy fields was able to be extracted efficiently. We could conclude in that this study contributed to the automatic production of a high-level land cover map for paddy fields.

Uncertainty Analysis of BAG by GNSS Correction (해저지형 표면자료의 GNSS 보정방법에 따른 불확실도 연구)

  • OH, Che-Young;KIM, HO-Yong;LEE, Yun-Sik;CHOI, Chul-Uong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.3
    • /
    • pp.1-9
    • /
    • 2019
  • In the recent marine sector, the development and standardization regarding S-100, which is the universal hydrographical data model standard for development of marine space information, was progressed, and for the effectiveness of marine chart production work and the multi-purpose use of water level data in S-100, S-102(Bathymetric Surface grid) standard development and various studies of BAG formats combined with water level and uncertainty, property information is being progressed. Since the water level information that is important in the operation of the ship is provided based on S-102, the calibration method of the location information when producing S-102 is an important factor in deciding the water level. In this study, the hydrographical surveying was conducted by piloting the standardized method for the production of S-102 in Korea, and have compared the accuracy of water level information according to the GNSS post treatment calibration method. As a result of comparing the water level in 2 places in the rocky terrain of the study area, the northern water level of Namu-do was shown as DL 0.79~0.83m, the eastern water level of Daeho-do was DL 12.63~12.91m, and the horizontal position errors of the intermittent sunshine water level were confirmed to be within 1m. As a result, the intermittent sunshine water level according to the location calibration method when producing the BAG was confirmed that it was in the available range for a ship's safe voyage. However, the accuracy verification for the location of the ship when conducting hydrographical surveying was judged that there is a need for a various additional study about regional characteristics and environment factor.

Quantitative Flood Forecasting Using Remotely-Sensed Data and Neural Networks

  • Kim, Gwangseob
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2002.05a
    • /
    • pp.43-50
    • /
    • 2002
  • Accurate quantitative forecasting of rainfall for basins with a short response time is essential to predict streamflow and flash floods. Previously, neural networks were used to develop a Quantitative Precipitation Forecasting (QPF) model that highly improved forecasting skill at specific locations in Pennsylvania, using both Numerical Weather Prediction (NWP) output and rainfall and radiosonde data. The objective of this study was to improve an existing artificial neural network model and incorporate the evolving structure and frequency of intense weather systems in the mid-Atlantic region of the United States for improved flood forecasting. Besides using radiosonde and rainfall data, the model also used the satellite-derived characteristics of storm systems such as tropical cyclones, mesoscale convective complex systems and convective cloud clusters as input. The convective classification and tracking system (CCATS) was used to identify and quantify storm properties such as life time, area, eccentricity, and track. As in standard expert prediction systems, the fundamental structure of the neural network model was learned from the hydroclimatology of the relationships between weather system, rainfall production and streamflow response in the study area. The new Quantitative Flood Forecasting (QFF) model was applied to predict streamflow peaks with lead-times of 18 and 24 hours over a five year period in 4 watersheds on the leeward side of the Appalachian mountains in the mid-Atlantic region. Threat scores consistently above .6 and close to 0.8 ∼ 0.9 were obtained fur 18 hour lead-time forecasts, and skill scores of at least 4% and up to 6% were attained for the 24 hour lead-time forecasts. This work demonstrates that multisensor data cast into an expert information system such as neural networks, if built upon scientific understanding of regional hydrometeorology, can lead to significant gains in the forecast skill of extreme rainfall and associated floods. In particular, this study validates our hypothesis that accurate and extended flood forecast lead-times can be attained by taking into consideration the synoptic evolution of atmospheric conditions extracted from the analysis of large-area remotely sensed imagery While physically-based numerical weather prediction and river routing models cannot accurately depict complex natural non-linear processes, and thus have difficulty in simulating extreme events such as heavy rainfall and floods, data-driven approaches should be viewed as a strong alternative in operational hydrology. This is especially more pertinent at a time when the diversity of sensors in satellites and ground-based operational weather monitoring systems provide large volumes of data on a real-time basis.

  • PDF

Predicting Regional Soybean Yield using Crop Growth Simulation Model (작물 생육 모델을 이용한 지역단위 콩 수량 예측)

  • Ban, Ho-Young;Choi, Doug-Hwan;Ahn, Joong-Bae;Lee, Byun-Woo
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_2
    • /
    • pp.699-708
    • /
    • 2017
  • The present study was to develop an approach for predicting soybean yield using a crop growth simulation model at the regional level where the detailed and site-specific information on cultivation management practices is not easily accessible for model input. CROPGRO-Soybean model included in Decision Support System for Agrotechnology Transfer (DSSAT) was employed for this study, and Illinois which is a major soybean production region of USA was selected as a study region. As a first step to predict soybean yield of Illinois using CROPGRO-Soybean model, genetic coefficients representative for each soybean maturity group (MG I~VI) were estimated through sowing date experiments using domestic and foreign cultivars with diverse maturity in Seoul National University Farm ($37.27^{\circ}N$, $126.99^{\circ}E$) for two years. The model using the representative genetic coefficients simulated the developmental stages of cultivars within each maturity group fairly well. Soybean yields for the grids of $10km{\times}10km$ in Illinois state were simulated from 2,000 to 2,011 with weather data under 18 simulation conditions including the combinations of three maturity groups, three seeding dates and two irrigation regimes. Planting dates and maturity groups were assigned differently to the three sub-regions divided longitudinally. The yearly state yields that were estimated by averaging all the grid yields simulated under non-irrigated and fully-Irrigated conditions showed a big difference from the statistical yields and did not explain the annual trend of yield increase due to the improved cultivation technologies. Using the grain yield data of 9 agricultural districts in Illinois observed and estimated from the simulated grid yield under 18 simulation conditions, a multiple regression model was constructed to estimate soybean yield at agricultural district level. In this model a year variable was also added to reflect the yearly yield trend. This model explained the yearly and district yield variation fairly well with a determination coefficients of $R^2=0.61$ (n = 108). Yearly state yields which were calculated by weighting the model-estimated yearly average agricultural district yield by the cultivation area of each agricultural district showed very close correspondence ($R^2=0.80$) to the yearly statistical state yields. Furthermore, the model predicted state yield fairly well in 2012 in which data were not used for the model construction and severe yield reduction was recorded due to drought.

Optimization of Classification of Local, Regional, and Teleseismic Earthquakes in Korean Peninsula Using Filter Bank (주파수 필터대역기술을 활용한 한반도의 근거리 및 원거리 지진 분류 최적화)

  • Lim, DoYoon;Ahn, Jae-Kwang;Lee, Jimin;Lee, Duk Kee
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.11
    • /
    • pp.121-129
    • /
    • 2019
  • An Earthquake Early Warning (EEW) system is a technology that alerts people to an incoming earthquake by using P waves that are detected before the arrival of more severe seismic waves. P-wave analysis is therefore an important factor in the production of rapid seismic information as it can be used to quickly estimate the earthquake magnitude and epicenter through the amplitude and predominant period of the observed P-wave. However, when a large-magnitude teleseismic earthquake is observed in a local seismic network, the significantly attenuated P wave phases may be mischaracterized as belonging to a small-magnitude local earthquake in the initial analysis stage. Such a misanalysis may be sent to the public as a false alert, reducing the credibility of the EEW system and potentially causing economic losses for infrastructure and industrial facilities. Therefore, it is necessary to develop methods that reduce misanalysis. In this study, the possibility of seismic misclassifying teleseimic earthquakes as local events was reviewed using the Filter Bank method, which uses the attenuation characteristics of P waves to classify local and outside Korean peninsula (regional and teleseismic) events with filtered waveform depending on frequency and epicenter distance. The data used in our analysis were analyzed for maximum Pv values using 463 events with local magnitudes (2 < ML ≦ 3), 44 (3 < ML ≦ 4), 4 (4 < ML ≦ 5), 3 (ML > 5), and 89 outside Korean peninsula earthquakes recorded by the KMA seismic network. The results show that local and telesesimic earthquakes can be classified more accurately when combination of filtering bands of No. 3 (6-12 Hz) and No. 6 (0.75-1.5 Hz) is applied.

The Analysis of R&D Investment Factors for Enhancing the Regional Domestic Competitiveness in China (중국의 지역 내 경쟁력 제고를 위한 R&D 투자요인 분석)

  • Yoon, Daisang;Lee, Jinho;Park, Sang-Hyun
    • Journal of Korea Technology Innovation Society
    • /
    • v.20 no.3
    • /
    • pp.805-836
    • /
    • 2017
  • China has become the group of two (G2) in almost fields including the scientific technology following the economic growth and joining the WTO in 2001. The main reason is that the government had strong intention for the industrialization of the scientific technology and connected the scientific technology and the economy. Typically, for analyzing the cause of the meteoric rise of China, the competitiveness of the scientific technology was analyzed by the entire score of the nation. However, in the case of China, there are differences in the pattern of the development between the eastern, central, and western province. Also, the industrialization and the competitiveness of the scientific technology are difference because each province established the decentralization of power. Therefore, it is more meaningful to analyze the main factors of Chinese economic growth on a province unit. In this study, therefore, we analyzed the competitive of R&D in China by 124 indexes in 31 areas. The data was analyzed by Partial least squares regression analysis. In conclusion, the scale of the area and the ability of R&D of the company are very important factors for total amount of production in the area. And the journals, patents, the transfer of technical know-how and the investment of R&D are main factors of the amount of export on the high-tech product. According to these results, the factors which make the difference in the industrialization and the competitiveness of the scientific technology in China were analyzed. Finally, it will be helpful to establish the policy for the development of the industrialization and the scientific technology in Korea.

A Study on the Limits of Manufacturing Innovation and Policy Direction of SMEs in the 4th Industrial Revolution : Focusing on the Limitations and Examples of Pohang SME's Smart Factory Introduction (4차 산업혁명시대 지역 중소기업의 제조혁신 한계와 스마트공장 정책 방향성 연구: 포항지역 중소기업의 스마트공장 조사를 중심으로)

  • Kim, Eunyoung;Park, Munsu
    • Journal of Science and Technology Studies
    • /
    • v.18 no.2
    • /
    • pp.269-306
    • /
    • 2018
  • Through this study, it is aimed to derive the policy direction considering the characteristics of the present Smart Factory, the industrial condition of Pohang area, and the promotion field. Secondly, the questionnaire data of the regional enterprises will prepare for the improvement of the industrial structure and the implications for efficiency, and preparation for regional preparation and industrial changes in preparation for the next generation of production revolution. The construction of Smart Factory in Pohang can be divided into two major directions. First, it is analyzed that smart factory pilot projects are highly needed, focusing on competitive medical precision manufacturing field among the SMEs in the region, primary metal and nonmetal manufacturing industries, and other machinery fields. In addition, local SMEs are willing to introduce smart factories for reasons of quality improvement and cost reduction, and it is confirmed that they will actively promote employee training and expertise if they can upgrade continuously.