• Title/Summary/Keyword: Regional Cerebral Blood Flow

Search Result 192, Processing Time 0.038 seconds

Effect of Repetitive Transcranial Magnetic Stimulation in Drug Resistant Depressed Patients (치료 저항성 우울증 환자에서 반복적 경두개 자기자극후 국소뇌혈류 변화)

  • Chung, Yong-An;Yoo, Ie-Ryung;Kang, Bong-Joo;Chae, Jeong-Ho;Lee, Hye-Won;Moon, Hyun-Jin;Kim, Sung-Hoon;Sohn, Hyung-Sun;Chung, Soo-Kyo
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.1
    • /
    • pp.9-15
    • /
    • 2007
  • Purpose: Repetitive transcranial magnetic stimulation (rTMS) has recently been clinically applied in the treatment of drug resistant depressed patients. There are mixed findings about the efficacy of rTMS on depression. Furthermore, the influence of rTMS on the physiology of the brain is not clear. We prospectively evaluated changes of regional cerebral blood flow (rCBF) between pre- and post-rTMS treatment in patients with drug resistant depression. Materials and Methods: Twelve patients with drug-resistant depression (7 male, 5 female; age range: $19{\sim}52$ years; mean age: $29.3{\pm}9.3$ years) were given rTMS on right prefrontal lobe with low frequency (1 Hz) and on left prefrontal lobe with high frequency (20 Hz), with 20-minute-duration each day for 3 weeks. Tc-99m ECD brain perfusion SPECT was obtained before and after rTMS treatment. The changes of cerebral perfusion were analyzed using statistical parametric mapping (SPM; t=3.14, uncorrected p<0.01, voxel=100). Results: Following areas showed significant increase in rCBF after 3 weeks rTMS treatment: the cingulate gyrus, fusiform gyrus of right temporal lobe, precuneus, and left lateral globus pallidus. Significant decrement was noted in: the precental and middle frontal gyrus of right frontal lobe, and fusiform gyrus of left occipital lobe. Conclusion: Low-frequency rTMS on the right prefrontal cortex and high-frequency rTMS on the left prefrontal cortex for 3 weeks as an add-on regimen have increased and decreased rCBF in the specific brain regions in drug-resistant depressed patients. Further analyses correlating clinical characteristics and treatment paradigm with functional imaging data may be helpful in clarifying the pathophysiology of drug-resistant depressed patients.

Hemodynamic Outcome of Successful Bypass Surgery in Patients with Atherosclerotic Cerebrovascular Disease: A study with Acetazolamide and $^{99m}Tc-ECD$ SPECT (죽상경화성 뇌혈관질환 환자에서 성공적인 EC/IC 우회술 후 혈류역학적 변화: 기저/아세타졸아미드 SPECT를 이용한 연구)

  • Eo, Jae-Seon;Oh, Chang-Wan;Kim, Yu-Kyeong;Park, Eun-Kyung;Lee, Won-Woo;Kim, Sang-Eun
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.40 no.6
    • /
    • pp.293-301
    • /
    • 2006
  • Purpose: The aim of the study was to evaluate the hemodynamic changes after successful bypass surgery in patients with atherosclerotic stenosis in ICA using $^{99m}Tc-ECD$ SPECT. Materials and Methods: Fourteen patients (M:F=8:6, mean age; $60{\pm}9$ years) who underwent STA-MCA anastomosis for unilateral atherosclerotic cerebrovascular disease were enrolled. $^{99m}Tc-ECD$ basal/acetazolamide perfusion SPECT studies were performed before, 10 days and 6 months after bypass surgery. Perfusion reserve was defined as the % changes after acetazolamide over rest image. Regional cerebral blood flow and perfusion reserve were compared preoperative, early-postoperative and late-postoperative scans. Results: The mean resting perfusion and decrease in perfusion reserve in affected ICA territory on preoperative scan was $52.4{\pm}3.5\;and\;-7.9{\pm}4.7%$, respectively. The resting perfusion was significantly improved after surgery on early-postoperative scan (mean $53.7{\pm}2.7$) and late-postoperative scan (mean $53.3{\pm}2.5$) compared with preoperative images (p<0.05, respectively). Resting perfusion did not showed further improvement on late-postoperative scan compared with early-postoperative scan. The perfusion reserve was $-3.7{\pm}2.6%$ on early-postoperative scan, and $-1.6{\pm}2.3%$ on late-postoperative scan, which was significantly improved after surgery. Additionally, further improvement of perfusion reserved as observed on late-postoperative scan (p<0.05). While, in the unaffected ICA territory, no significant changes in the resting perfusion and perfusion reserve was observed. Conclusion: The improvement of resting perfusion and perfusion reserve in early-postoperative scan reflects the immediate restoration of the cerebral blood flow by bypass surgery. In contrasts, further improvement of perfusion reserve showing on late-postoperative scan may indicate a good collateral development after surgery, which may indicate good surgical outcome after surgery.

One Stage Total Repair of the Aortic Arch Anomaly using the Regional Perfusion (대동맥궁 이상이 동반된 선천성 심장병에서 국소 순환을 이용한 일차 완전 교정)

  • Jang Woo-Sung;Lim Cheong;Lim Hong-Kook;Min Sun-Kyung;Kwak Jae-Kun;Chung Eui-Seuk;Kim Dong-Jin;Kim Woong-Han
    • Journal of Chest Surgery
    • /
    • v.39 no.6 s.263
    • /
    • pp.434-439
    • /
    • 2006
  • Background: Deep hypothermic circulatory arrest during repair of aortic arch anomalies may induce neurological complications or myocardial injury. So we surveyed if the regional cerebral and myocardial perfusion might eliminate those potential side effects. Material and Method: From March 2000 to December 2004, 62 neonates or infants with aortic arch anomaly underwent one stage biventricular repair using the regional perfusion technique by single surgeon. Preoperative diagnosis of the arch anomaly consisted of coarctation (n=46), interruption of the aorta (n=12), hypoplastic left heart syndrome (n=2) and truncus areteriosus (n=2). Combined anomalies were ventricular septal defect (n=51), TAPVR (n=1), PAPVR (n=1) and atrioventricular septal defect (n=2). Arterial cannula was inserted at the innominate artery. Result: The mean regional perfusion time of brain was $28{\pm}10min$. Operative mortality rates was 0 (0/62). Late death was 1 (1/62) during $11{\pm}7$ months of follow-up. Neurologic complications consisted of transient chorea in 1 case. There was no reoperation associated with arch anolamy. Pulmonary complication associated with arch repair occurred in f case which was managed by aortopexy. Conclusion: One-tage rch repair using the regional profusion is safe and effective in minimizing the neurologic and myocardial complications.

Principle and Recent Advances of Neuroactivation Study (신경 활성화 연구의 원리와 최근 동향)

  • Kang, Eun-Joo
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.2
    • /
    • pp.172-180
    • /
    • 2007
  • Among the nuclear medicine imaging methods available today, $H_2^{15}O-PET$ is most widely used by cognitive neuroscientists to examine regional brain function via the measurement of regional cerebral blood flow (rCBF). The short half-life of the radioactively labeled probe, $^{15}O$, often allows repeated measures from the same subjects in many different task conditions. $H_2^{15}O-$ PET, however, has technical limitations relative to other methods of functional neuroimaging, e.g., fMRI, including relatively poor time and spatial resolutions, and, frequently, insufficient statistical power for analysis of individual subjects. However, recent technical developments, such as the 3-D acquisition method provide relatively good image quality with a smaller radioactive dosage, which in turn results in more PET scans from each individual, thus providing sufficient statistical power for the analysis of individual subject's data. Furthermore, the noise free scanner environment $H_2^{15}O$ PET, along with discrete acquisition of data for each task condition, are important advantages of PET over other functional imaging methods regarding studying state-dependent changes in brain activity. This review presents both the limitations and advantages of $^{15}O-PET$, and outlines the design of efficient PET protocols, using examples of recent PET studies both in the normal healthy population, and in the clinical population.

Comparison of the Neural Substrates Mediating the Semantic Processing of Korean and English Words Using Positron Emission Tomography (양전자방출단층촬영을 이용한 국어단어와 영어단어의 어의처리 신경매개체의 특성 비교)

  • Kim, Jea-Jin;Kim, Myung-Sun;Cho, Sang-Soo;Kwon, Jun-Soo;Lee, Jae-Sung;Lee, Dong-Soo;Chung, June-Key;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.35 no.3
    • /
    • pp.142-151
    • /
    • 2001
  • Purpose: This study was performed to search the relatively specific brain regions related to the semantic processing of Korean and English words on the one hand and the regions common to both on the other. Materials and Methods: Regional cerebral blood flow associated with different semantic tasks was examined using $[^{15}O]H_2O$ positron omission tomography in 13 healthy volunteers. The tasks consisted of semantic tasks for Korean words, semantic tasks for English words and control tasks using simple pictures. The regions specific and common to each language were identified by the relevant subtraction analysis using statistical parametric mapping. Results: Common to the semantic processing of both words, the activation site was observed in the fusiform gyrus, particularly the left side. In addition, activation of the left inferior temporal gyrus was found only in the semantic processing of English words. The regions specific to Korean words were observed in multiple areas, including the right primary auditory cortex; whereas the regions specific to English words were limited to the right posterior visual area. Conclusion: Internal phonological process is engaged in performing the visual semantic task for Korean words of the high proficiency, whereas visual scanning plays an important role in performing the task for English words of the low proficiency.

  • PDF

Interictal rCBF SPECT, MRI and Surgical Outcome of Intractable Temporal Lobe Epilepsy (난치성 측두엽간질의 발작간 뇌혈류 SPECT, MRI와 수술성과 비교)

  • Zeon, Seok-Kil;Joo, Yang-Goo;Lee, Sang-Doe;Son, Eun-Ik;Lee, Young-Hwan
    • The Korean Journal of Nuclear Medicine
    • /
    • v.28 no.3
    • /
    • pp.307-312
    • /
    • 1994
  • Interictal single photon emission computed tomography of regional cerebral blood flow (rCBF SPECT) in 18 intractable temporal lobe epilepsy patients(8 male and 10 female patients: average 23.5 years old) were compared with 2.0 T magnetic resonance imaging (MRI). And surgical outcome was analysed with the findings, symptom duration and lateralization of temporal lobe. Preoperatively rCBF SPECT was done in all 18 patients with intravenous injection of 740 MBq 99mTc-HMPAO. MRI was also done preoperatively in 13 patients. Surgical outcome was classified by Engel's outcome classification(four-part classification recommended at the first Palm Desert conference). rCBF SPECT detected correctly lateralising abnormality of temporal lobe hypoperfusion in 13/18(72.2%), contralateral temporal lobe hypoperfusion in 2/18(11.1%) and showed no def-inite abnormality in 3/18(16.7%). The positive predictive value of unilateral temporal lobe hypoperfusion was 87%. MRI detected correct localising abnormality in 8/13(61.5%), such as hippocampal atrophy(7/13), asymmetric temporal horn(6/13), anterior temporal lobe atrophy(1/13), increased signal intensity from hippocampus(1/13) and calcific density(1/13), and no abnormal finding was noted in 5/13(38.5%). There was no false positive findings and the positive predictive value of MRI was 100%. Only 2 cases showed same lateralization findings in rCBF SPECT and MRI. There was no significant correlation between symptom duration and no abnormal findings on SPECT or MRI. Surgical outcome showed class I in 15/18(83.3%), and class II in 2/18(11.1%). One case of no abnormal finding in both SPECT and MRI showed class III surgical outcome. No class IV surgical outcome was noted. Surgical outcome, lateralization of epileptic focus in temporal lobe and abnormal findings in rCBR SPECT or MRI were not significantly correlated.

  • PDF

Differences of Tc-99m HMPAO SPECT Imaging in the Early Stage of Subcortical Vascular Dementia Compared with Alzheimer's Disease (초기 단계의 피질하 혈관성 치매와 알쯔하이머병에서 Tc-99m HMPAO SPECT 영상 소견 차이)

  • Park, Kyung-Won;Kang, Do-Young;Park, Min-Jeong;Cheon, Sang-Myung;Cha, Jae-Kwan;Kim, Sang-Ho;Kim, Jae-Woo
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.6
    • /
    • pp.530-537
    • /
    • 2007
  • Purpose: The aim of this study is to assess the specific patterns of regional cerebral blood flow (rCBF) in patients with the early stage of subcortical vascular dementia (SVaD) and Alzheimer's disease (AD) using Tc-99m HMPAO SPECT, and to compare the differences between the two conditions. Materials and Methods: Sixteen SVaD, 46 AD and 12 control subjects participated in this study. We included the patients with SVaD and AD according to NINCDS-ADRDA and NINDS-AIREN criteria. They were all matched for age, education and clinical dementia rating scores. Three groups were evaluated by Tc-99m HMPAO SPECT using statistical parametric mapping (SPM) for measuring rCBF. The SPECT data of patients with SVaD and AD were compared with those of normal control subjects and then compared with each other. Results: SPM analysis of the SPECT image showed significant perfusion deficits on the right temporal region and thalamus, left insula and superior temporal gyrus, both cingulate gyri and frontal subgyri in patients with SVaD and on the left supramarginal gyrus, superior temporal gyrus, postcentral gyrus and inferior parietal lobule, right fugiform gyrus and both cingulate gyri in AD compared with control subjects (uncorrected p<0.01). SVaD patients revealed significant hypoperfusion in the right parahippocampal gyrus with cingulated gyrus, left insula and both frontal subgyral regions compared with AD (uncorrected p<0.01). Conclusion: Our study shows characteristic and different pattern of perfusion deficits in patients with SVaD and AD, and these results may be helpful to discriminate the two conditions in the early stage of illness.

Assessment of Cerebral Hemodynamic Changes in Pediatric Patients with Moyamoya Disease Using Probabilistic Maps on Analysis of Basal/Acetazolamide Stress Brain Perfusion SPECT (소아 모야모야병에서 뇌확률지도를 이용한 수술전후 혈역학적 변화 분석)

  • Lee, Ho-Young;Lee, Jae-Sung;Kim, Seung-Ki;Wang, Kyu-Chang;Cho, Byung-Kyu;Chung, June-Key;Lee, Myung-Chul;Lee, Dong-Soo
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.3
    • /
    • pp.192-200
    • /
    • 2008
  • To evaluate the hemodynamic changes and the predictive factors of the clinical outcome in pediatric patients with moyamoya disease, we analyzed pre/post basal/acetazolamide stress brain perfusion SPECT with automated volume of interest (VOIs) method. Methods: Total fifty six (M:F = 33:24, age $6.7{\pm}3.2$ years) pediatric patients with moyamoya disease, who underwent basal/acetazolamide stress brain perfusion SPECT within 6 before and after revascularization surgery (encephalo-duro-arterio-synangiosis (EDAS) with frontal encephalo-galeo-synangiosis (EGS) and EDAS only followed on contralateral hemisphere), and followed-up more than 6 months after post-operative SPECT, were included. A mean follow-up period after post-operative SPECT was $33{\pm}21$ months. Each patient's SPECT image was spatially normalized to Korean template with the SPM2. For the regional count normalization, the count of pons was used as a reference region. The basal/acetazolamide-stressed cerebral blood flow (CBF), the cerebral vascular reserve index (CVRI), and the extent of area with significantly decreased basal/acetazolamide- stressed rCBF than age-matched normal control were evaluated on both medial frontal, frontal, parietal, occipital lobes, and whole brain in each patient's images. The post-operative clinical outcome was assigned as good, poor according to the presence of transient ischemic attacks and/or fixed neurological deficits by pediatric neurosurgeon. Results: In a paired t-test, basal/acetazolamide-stressed rCBF and the CVRI were significantly improved after revascularization (p<0.05). The significant difference in the pre-operative basal/acetazolamide-stressed rCBF and the CVRI between the hemispheres where EDAS with frontal EGS was performed and their contralateral counterparts where EDAS only was done disappeared after operation (p<0.05). In an independent student t-test, the pre-operative basal rCBF in the medial frontal gyrus, the post-operative CVRI in the frontal lobe and the parietal lobe of the hemispheres with EDAS and frontal EGS, the post-operative CVRI, and ${\Delta}CVRI$ showed a significant difference between patients with a good and poor clinical outcome (p<0.05). In a multivariate logistic regression analysis, the ${\Delta}CVRI$ and the post-operative CVRI of medial frontal gyrus on the hemispheres where EDAS with frontal EGS was performed were the significant predictive factors for the clinical outcome (p =0.002, p =0.015), Conclusion: With probabilistic map, we could objectively evaluate pre/post-operative hemodynamic changes of pediatric patients with moyamoya disease. Specifically the post-operative CVRI and the post-operative CVRI of medial frontal gyrus where EDAS with frontal EGS was done were the significant predictive factors for further clinical outcomes.

Functional MRI of Visual Cortex: Correlation between Photic Stimulator Size and Cortex Activation (시각피질의 기능적 MR 연구: 광자극 크기와 피질 활성화와의 관계)

  • 김경숙;이호규;최충곤;서대철
    • Investigative Magnetic Resonance Imaging
    • /
    • v.1 no.1
    • /
    • pp.114-118
    • /
    • 1997
  • Purpose: Functional MR imaging is the method of demonstrating changes in regional cerebral blood flow produced by sensory, motor, and any other tasks. Functional MR of visual cortex is performed as a patient stares a photic stimulation, so adaptable photic stimulation is necessary. The purpose of this study is to evaluate whether the size of photic stimulator can affect the degree of visual cortex activation. Materials and Methods: Functional MR imaging was performed in 5 volunteers with normal visual acuity. Photic stimulator was made by 39 light-emitting diodes on a plate, operating at 8Hz. The sizes of photic stimulator were full field, half field and focal central field. The MR imager was Siemens 1.5-T Magnetom Vision system, using standard head coil. Functional MRI utilized EPI sequence (TR/TE= 1.0/51. Omsec, matrix $No.=98{\times}128$, slice thickness=8mm) with 3sets of 6 imaging during stimulation and 6 imaging during rest, all 36 scannings were obtained. Activation images were obtained using postprocessing software(statistical analysis by Z-score), and these images were combined with T-1 weighted anatomical images. The activated signals were quantified by numbering the activated pixels, and activation a index was obtained by dividing the pixel number of each stimulator size with the sum of the pixel number of 3 study using 3 kinds of stimulators. The correlation between the activation index and the stimulator size was analysed. Results: Mean increase of signal intensities on the activation area using full field photic stimulator was about 9.6%. The activation index was greatest on full field, second on half field and smallest on focal central field in 4. The index of half field was greater than that of full field in 1. The ranges of activation index were full field 43-73%(mean 55%), half field 22-40 %(mean 32%), and focal central field 5-24%(mean 13%). Conclusion: The degree of visual cortex activation increases with the size of photic stimulator.

  • PDF

Imaging Neuroreceptors in the Living Human Brain

  • Wagner Jr Henry N.;Dannals Robert F.;Frost J. James;Wong Dean F.;Ravert Hayden T.;Wilson Alan A.;Links Jonathan M.;Burns H. Donald;Kuhar Michael J.;Snyder Solomon H.
    • The Korean Journal of Nuclear Medicine
    • /
    • v.18 no.2
    • /
    • pp.17-23
    • /
    • 1984
  • For nearly a century it has been known that chemical activity accompanies mental activity, but only recently has it been possible to begin to examine its exact nature. Positron-emitting radioactive tracers have made it possible to study the chemistry of the human mind in health and disease, using chiefly cyclotron-produced radionuclides, carbon-11, fluorine-18 and oxygen-15. It is now well established that measurable increases in regional cerebral blood flow, glucose and oxygen metabolism accompany the mental functions of perception, cognition, emotion and motion. On May 25, 1983 the first imaging of a neuroreceptor in the human brain was accomplished with carbon-11 methyl spiperone, a ligand that binds preferentially to dopamine-2 receptors, 80% of which are located in the caudate nucleus and putamen. Quantitative imaging of serotonin-2, opiate, benzodiazapine and muscarinic cholinergic receptors has subsequently been accomplished. In studies of normal men and women, it has been found that dopamine and serotonin receptor activity decreases dramatically with age, such a decrease being more pronounced in men than in women and greater in the case of dopamine receptors than serotonin-2 receptors. Preliminary studies in patients with neuropsychiatric disorders suggests that dopamine-2 receptor activity is diminished in the caudate nucleus of patients with Huntington's disease. Positron tomography permits quantitative assay of picomolar quantities of neuro-receptors within the living human brain. Studies of patients with Parkinson's disease, Alzheimer's disease, depression, anxiety, schizophrenia, acute and chronic pain states and drug addiction are now in progress. The growth of any scientific field is based on a paradigm or set of ideas that the community of scientists accepts. The unifying principle of nuclear medicine is the tracer principle applied to the study of human disease. Nineteen hundred and sixty-three was a landmark year in which technetium-99m and the Anger camera combined to move the field from its latent stage into a second stage characterized by exponential growth within the framework of the paradigm. The third stage, characterized by gradually declining growth, began in 1973. Faced with competing advances, such as computed tomography and ultrasonography, proponents and participants in the field of nuclear medicine began to search for greener pastures or to pursue narrow sub-specialties. Research became characterized by refinements of existing techniques. In 1983 nuclear medicine experienced what could be a profound change. A new paradigm was born when it was demonstrated that, despite their extremely low chemical concentrations, in the picomolar range, it was possible to image and quantify the distribution of receptors in the human body. Thus, nuclear medicine was able to move beyond physiology into biochemistry and pharmacology. Fundamental to the science of pharmacology is the concept that many drugs and endogenous substances, such as neurotransmitters, react with specific macromolecules that mediate their pharmacologic actions. Such receptors are usually identified in the study of excised tissues, cells or cell membranes, or in autoradiographic studies in animals. The first imaging and quantification of a neuroreceptor in a living human being was performed on May 25, 1983 and reported in the September 23, 1983 issue of SCIENCE. The study involved the development and use of carbon-11 N-methyl spiperone (NMSP), a drug with a high affinity for dopamine receptors. Since then, studies of dopamine and serotonin receptors have been carried out in over 100 normal persons or patients with various neuropsychiatric disorders. Exactly one year later, the first imaging of opitate receptors in a living human being was performed [1].

  • PDF