• 제목/요약/키워드: Region-growing

검색결과 908건 처리시간 0.023초

세포 영상 영역 분할을 위한 Threshold를 적용한 Region Growing 기법 (Region Growing Technique Using Threshold for Cell Image Segmentation)

  • 강미영;하진영;김호성;김백섭
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1999년도 가을 학술발표논문집 Vol.26 No.2 (2)
    • /
    • pp.533-535
    • /
    • 1999
  • 자궁경부진 세포인식 시스템에 있어서 가장 중요한 것이 영상처리를 이용하여 세포핵과 세포질을 추출하여 세포의 형태적인 정보를 알아내는 과정이다. 기존의 전역 thresholding 기법이나 region growing의 경우는 pap smear 검사를 통해 얻어진 세포 영상을 분할할 수 있는 region growing 기법을 제안한다. 제안된 region growing 기법은 초기에 seed를 검출할 때 local threshold growing 기법을 제안한다. 제안된 region growing 기법은 초기에 seed를 검출할 때 local threshold 개념을 도입하여 seed의 검출을 고르게 하고, 2가지 확장 조건을 사용하여 영역을 확장한다. 첫 번째 확장 조건은 비정상 세포나 artifact가 많아서 어둡게 나타나는 영상이나 세포질과 배경의 경계가 뚜렷하지 않아서 세포질의 구별이 어려운 영상의 영역 분할이 가능하도록 그 특성을 반영하고, 두 번째 조건은 세포가 흡수하는 빛의 양이 일정하다는 가정으로 영상에서의 지역 특성(gray level, color 등을 반영한다. 제안된 기법은 정상세포 영상뿐만 아니라 비정상 세포 영상에 대하여 over-segment나 under-segment하는 경우를 줄여서 영역 분할에 좋은 결과를 보인다.

  • PDF

적응적 다중 시드 영역 확장법을 이용한 구조적 패턴의 보도 영역 검출 (Detection of Pavement Region with Structural Patterns through Adaptive Multi-Seed Region Growing)

  • 원선희;주성일;나현숙;최형일
    • 정보처리학회논문지B
    • /
    • 제19B권4호
    • /
    • pp.209-220
    • /
    • 2012
  • 본 논문에서는 보행자에 장착된 카메라로부터 입력된 자연영상에서의 구조적 패턴 변화에 강인한 적응적인 보도 영역 검출 기법을 제안한다. 제안하는 방법에서는 다양한 패턴을 가지는 보도 환경에서 안정적으로 보도 영역을 분할하기 위해 첫 번째 단계에서는 소실점에 기반하는 VRay를 이용한 방사형 영역 분할법을 통해 보도의 경계선을 검출하여 보도의 후보영역을 분리하며, 두 번째 단계에서는 분리된 후보영역 내에서의 시드 영역 확장법(SRG)을 개선한 적응적 다중 시드 영역 확장법(A-MSRG)를 통해 구조적 패턴이 반복되는 보도 영역을 실시간으로 검출하는 방법을 수행한다. 성능평가를 위해 제안된 방사형 영역 분할법과 A-MSRG와의 결합에 의한 영역 검출 결과의 효율성을 측정한다. 기존의 SRG, MSRG 방법과의 비교 수행을 통해 제안된 방법의 타당성을 입증하였다.

버스 공공와이파이 보안 접속 동향 분석에 관한 연구 (A study on the analysis of bus public Wi-Fi security access trends)

  • 최홍주
    • Design & Manufacturing
    • /
    • 제15권4호
    • /
    • pp.14-23
    • /
    • 2021
  • In this study, we have analyzed the access status and the data usage trend of the public Wi-Fi on the bus, which has not been carried out in the previous studies. The analysis period of this study is 5 months from Nov. 2020 to Mar. 2021. When we compared the access status of Seoul metropolitan and the non-metropolitan region against each region's deployment status ratio, the access ratio of the metropolitan region was higher than the non-metropolitan region, of which the gap was 4.53%. The access for each region showed the growing trend, which was 43.5% on average. The data usage also showed the growing trend, 2.7% on average. Weekly data usage showed the growing trend irrespective of weekdays or weekends. The data usage of the weekdays was 695GB higher than weekends. The data usage during commuting hours including school (7:00~9:00 a.m. and 4:00~6:00 p.m.) was higher than 3,000GB. We can conclude that bus public Wi-Fi was used more actively in non-metropolitan region than Seoul metropolitan region by the office workers and students. The secure access also showed the growing trend. And the secure data usage also showed the growing trend.

Segmentation of Arterial Vascular Anatomy around the Stomach based on the Region Growing Based Method

  • Kang, Jiwoo;Kim, Doyoung;Lee, Sanghoon
    • Journal of International Society for Simulation Surgery
    • /
    • 제1권2호
    • /
    • pp.75-79
    • /
    • 2014
  • Purpose The region growing has a critical problem that it often extract vessels with unexpected objects such as a bone which has a similar intensity characteristics to the vessel. We propose the new method to extract arterial vascular anatomy around the stomach from the CTA volume without the post-processing. Materials and Methods Our method, which is also based on the region growing, requires the two seed points from the use. I automatically extracts perigastric arteries using the adaptive region growing method and it does not need any post-processing. Results The three region growing based methods are used to extract perigastric arteries - the conventional region growings with restrict and loose thresholds each and the proposed method. The 3D visualization from the result of our method shows our method extracted the all required arteries for gastric surgery. Conclusion By extracting perigastric arteries using the proposed method, over-segmentation problem that unexpected anatomical objects such as a rib or backbone are also segmented does not occurs anymore. The proposed method does not need to sensitively determine the thresholds of the similarity function. By visualizing the result, the preoperative simulation of arterial vascular anatomy around the stomach can be possible.

S&M 영역화에서 전처리 필터링의 효과 (Effects of Preprocessing in S&M Region Growing)

  • 박지환;김남철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1988년도 전기.전자공학 학술대회 논문집
    • /
    • pp.217-221
    • /
    • 1988
  • Preprocessing is indispensable to eliminate local granularities prior to region growing. In this paper, we examined the effects of preprocessing in S&M region growing technique. Experimental results show that a modified Nagao filter removes the local granularities well and compensates for the defects of Nagao filter.

  • PDF

Surface Extraction from Point-Sampled Data through Region Growing

  • Vieira, Miguel;Shimada, Kenji
    • International Journal of CAD/CAM
    • /
    • 제5권1호
    • /
    • pp.19-27
    • /
    • 2005
  • As three-dimensional range scanners make large point clouds a more common initial representation of real world objects, a need arises for algorithms that can efficiently process point sets. In this paper, we present a method for extracting smooth surfaces from dense point clouds. Given an unorganized set of points in space as input, our algorithm first uses principal component analysis to estimate the surface variation at each point. After defining conditions for determining the geometric compatibility of a point and a surface, we examine the points in order of increasing surface variation to find points whose neighborhoods can be closely approximated by a single surface. These neighborhoods become seed regions for region growing. The region growing step clusters points that are geometrically compatible with the approximating surface and refines the surface as the region grows to obtain the best approximation of the largest number of points. When no more points can be added to a region, the algorithm stores the extracted surface. Our algorithm works quickly with little user interaction and requires a fraction of the memory needed for a standard mesh data structure. To demonstrate its usefulness, we show results on large point clouds acquired from real-world objects.

Region Growing Segmentation with Directional Features

  • Lee, Sang-Hoon
    • 대한원격탐사학회지
    • /
    • 제26권6호
    • /
    • pp.731-740
    • /
    • 2010
  • A region merging technique is suggested in this paper for the segmentation of high-spatial resolution imagery. It employs a region growing scheme based on the region adjacency graph (RAG). The proposed algorithm uses directional neighbor-line average feature vectors to improve the quality of segmentation. The feature vector consists of 9 components which includes an observation and 8 directional averages. Each directional average is the average of the pixel values along the neighbor line for a given neighbor line length at each direction. The merging coefficients of the segmentation process use a part of the feature components according to a given merging coefficient order. This study performed the extensive experiments using simulation data and a real high-spatial resolution data of IKONOS. The experimental results show that the new approach proposed in this study is quite effective to provide segments of high quality for the object-based analysis of high-spatial resolution images.

영역 확장 기법과 오류 역전파 알고리즘을 이용한 자궁경부 세포진 영역 분할 및 인식 (Nucleus Segmentation and Recognition of Uterine Cervical Pop-Smears using Region Growing Technique and Backpropagation Algorithm)

  • 김광백;김성신
    • 한국정보통신학회논문지
    • /
    • 제10권6호
    • /
    • pp.1153-1158
    • /
    • 2006
  • 자궁 경부 세포진 영상의 핵 영역 분할은 자궁 경부암 자동화 검색 시스템의 가장 어렵고도 중요한 분야로 알려져 있다. 자궁 경부 세포진 영상은 배경과 세포의 영역이 확실히 구분되지 않는 경우가 많기 때문에 이들을 확실히 구분하는 것이 매우 중요하다. 본 논문에서는 이러한 문제점을 해결하기 위해 자궁 경부 세포진 영상에서 Region growing 기법을 적용하여 세포 영상을 분할한다. Region growing 기법은 화소간의 유사도를 측정하여 영역을 확장하여 분할하는 방법이다. 세포와 배경이 분할된 영상을 일정 임계값을 이용하여 영상을 이진화 한 후, 8방향 윤곽선 추적 알고리즘을 이용해 세포 영역을 추출한다. 추출된 세포 영역을 원 영상인 RGB 컬러로 변환한 후에 K-means 알고리즘을 적용하여 각 세포 영역의 RGB 화소를 R, G, B 채널로 각각 분리하여 클러스터링 한다. 클러스터링된 각 각의 R, G, B 채널의 클러스터 값을 이용하여 HSI 모델로 변환시킨 후에 세포핵 영역의 Hue 정보를 추출한다. 추출된 세포핵의 특징을 오류 역전파 알고리즘을 적용하여 정상 세포와 비정상 세포를 분류하고 인식한다.

CT 영상에서 Region Growing 기법을 이용한 관심 장기 영역의 자동 추출 (Automatic Segmentation of the Interest Organ Region in CT Images Using Region Growing)

  • 배호영;이우주;이배호
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 가을 학술발표논문집 Vol.33 No.2 (B)
    • /
    • pp.526-530
    • /
    • 2006
  • 논문은 CT영상에서 영역 확장 기법을 이용하여 인간의 장기 중 뇌와 간을 자동으로 추출할 수 있는 방법을 제안한다. 이는 뇌와 간이 CT영상에서 비교적 넓은 영역을 차지하고 있다는 사실에 기인하였으며, CT영상에서 특정 장기 영역을 추출하기 위해서 크게 초기 탐색 영역 결정 단계와 최종 장기 영역 단계로 나누어진다. 초기 탐색 영역은 CT영상 내에서 추출하고자 하는 장기 영역과 관계없는 부분을 제거하고 특정 장기 영역만을 남겨 관심 장기 영역의 검출률을 높이는 작업이다. 본 논문에서는 CT영상에서 비교적 높은 Gray Level을 가지고 있는 뼈영역인 두개골과 척추의 위치를 기반으로 하여 초기 탐색 영역을 결정하는 방법을 사용하였다. 특정 장기 영역의 추출은 ATID(Automatic Threshold Intensity Decision)를 이용한 이진화 단계, 모폴로지의 Opening 기법을 이용한 잡음제거 단계, Region Growing 기법을 이용한 특정 영역 추출 단계를 이용하는 과정을 거친다. 본 논문에서는 Region Growing 기법을 거친 다음 각각의 그룹 중에서 크기가 가장 큰 부분을 최종 특정 장기 영역으로 결정하였다. 본 논문에서 제안한 알고리즘은 국립전남대학교 부속병원에서 수집된 각각 뇌영상 100장과 간영상 100장을 사용하여 실험하였고, 제안된 알고리즘을 통해 관심 장기 영역을 추출했을 경우 약 91%이상의 높은 추출률을 보였다.

  • PDF

피부색 및 깊이정보를 이용한 영역채움 기반 손 분리 기법 (Region-growing based Hand Segmentation Algorithm using Skin Color and Depth Information)

  • 서종훈;채승호;심진욱;김하영;한탁돈
    • 한국멀티미디어학회논문지
    • /
    • 제16권9호
    • /
    • pp.1031-1043
    • /
    • 2013
  • 영상에서 배경을 제거하고 손을 분리하는 기술은 손 인식 연구에서 가장 먼저 수행되는 기술이며, 분리된 결과 영상의 성능에 따라 이후의 인식 단계의 성능이 결정되는 중요한 기술이다. 기존의 연구는 조명 및 배경의 변화에 취약하거나 다수의 사용자와 상호작용에 한계가 있었다. 본 논문에서는 컬러 영상과 깊이 영상을 혼용하여 손을 분리하는 기술을 제안한다. 먼저 입력된 컬러 영상을 이용하여 복잡한 환경에서도 정확하게 영역 채움을 위한 초기 위치를 설정하였다. 이 위치를 기준으로 영역 채움 연산을 위한 한계 영역을 재설정하여 조명 변화로 침식된 영역을 포함하도록 하고, 깊이 영상에서 영역 채움 연산을 수행함으로써 조명과 환경의 변화에도 강인하게 손의 영역을 분리하도록 하였다. 또한, 이렇게 분리된 손의 영역을 이용하여 실시간으로 피부 모델을 학습함으로써 조명 환경에 적응적으로 피부 모델을 갱신하여 보다 강인한 인식 성능을 얻을 수 있었다. 이를 다양한 조명 및 배경 환경에서 기존의 알고리즘과 비교 실험을 수행하여 강인한 인식 성능을 확인할 수 있었으며, 특히 역광 환경과 같이 조명 변화가 극심한 환경에서 강인한 성능을 보여주었다.