• Title/Summary/Keyword: Region-based Image

검색결과 1,862건 처리시간 0.027초

사이드 스캔 소나 영상에서 수중물체 자동 탐지를 위한 컨볼루션 신경망 기법 적용 (The application of convolutional neural networks for automatic detection of underwater object in side scan sonar images)

  • 김정문;최지웅;권혁종;오래근;손수욱
    • 한국음향학회지
    • /
    • 제37권2호
    • /
    • pp.118-128
    • /
    • 2018
  • 본 논문은 사이드 스캔 소나 영상을 컨볼루션 신경망으로 학습하여 수중물체를 탐색하는 방법을 다루었다. 사이드 스캔 소나 영상을 사람이 직접 분석하던 방법에서 컨볼루션 신경망 알고리즘이 보강되면 분석의 효율성을 높일 수 있다. 연구에 사용한 사이드 스캔 소나의 영상 데이터는 미 해군 수상전센터에서 공개한 자료이고 4종류의 합성수중물체로 구성되었다. 컨볼루션 신경망 알고리즘은 관심영역 기반으로 학습하는 Faster R-CNN(Region based Convolutional Neural Networks)을 기본으로 하며 신경망의 세부사항을 보유한 데이터에 적합하도록 구성하였다. 연구의 결과를 정밀도-재현율 곡선으로 비교하였고 소나 영상 데이터에 지정한 관심영역의 변경이 탐지성능에 미치는 영향을 검토함으로써 컨볼루션 신경망의 수중물체 탐지 적용성에 대해 살펴보았다.

Support Vector Machine Learning for Region-Based Image Retrieval with Relevance Feedback

  • Kim, Deok-Hwan;Song, Jae-Won;Lee, Ju-Hong;Choi, Bum-Ghi
    • ETRI Journal
    • /
    • 제29권5호
    • /
    • pp.700-702
    • /
    • 2007
  • We present a relevance feedback approach based on multi-class support vector machine (SVM) learning and cluster-merging which can significantly improve the retrieval performance in region-based image retrieval. Semantically relevant images may exhibit various visual characteristics and may be scattered in several classes in the feature space due to the semantic gap between low-level features and high-level semantics in the user's mind. To find the semantic classes through relevance feedback, the proposed method reduces the burden of completely re-clustering the classes at iterations and classifies multiple classes. Experimental results show that the proposed method is more effective and efficient than the two-class SVM and multi-class relevance feedback methods.

  • PDF

초저속 전송을 위한 영역간의 대조 차를 이용한 계층적 영상 분할 (Hierarchical Image Segmentation Using Contrast Difference of Neighbor Regions for Very Low Bit Rate Coding)

  • 송근원;김기석;박영식;하영호
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 1996년도 학술대회
    • /
    • pp.175-180
    • /
    • 1996
  • In this paper, a new image segmentation method based on merging of two low contrast neighbor regions iteratively is proposed. It is suitable for very low bit rate coding. The proposed method reduces efficiently contour information and preserves subjective and objective image quality. It consists of image segmentation using 4-level hierarchical structure based on mathematical morphology and 1-level region merging structure using the contrast difference of two adjacent neighbor regions. For each segmented region of the third level, two adjacent neighbor regions having low contrast difference value in fourth level based on contrast difference value is merged iteratively. It preserves image quality and shows the noticeable reduction of the contour information, so that it can improve the bottleneck problem of segmentation-based coding at very low bit rate.

  • PDF

빛의 불규칙성을 기반으로 한 동작영역 검출 알고리즘 (Motion Area Detection Algorithm based on Irregularity of Light)

  • 김창민;이규웅
    • 정보과학회 논문지
    • /
    • 제44권10호
    • /
    • pp.1094-1104
    • /
    • 2017
  • 본 논문이 제안하는 동작검출 알고리즘은 빛에 대한 불규칙성을 이용하여 동작영역을 탐색하는 방식으로, 기존 3 way-diff 알고리즘에서 주장한 반사된 빛 영역을 수식화하여 추출한다. 즉, 3 way-diff 알고리즘을 확장한 알고리즘이다. 3 way-diff 알고리즘은 연속된 3개의 이미지를 사용하여 반사된 빛 영역을 추출한다. 이 알고리즘에서 주장하는 반사된 빛 영역이란 이미지 제작과정에서 빛에 의해 발생된 영역으로 모든 사물 주변에 미세하게 생성된다. 이러한 영역을 추출하기 위해 하나의 과정을 보인다. 하지만 이 과정은 단순한 작업일 뿐 빛에 대한 수식이 정의되지 않았다. 본 논문은 3 way-diff 알고리즘에서 주장하는 반사된 빛 영역을 잡음의 일종이라 판단하여 반사된 빛 영역을 추출하는 수식을 정의한다. 제안된 알고리즘과 기존 알고리즘들에 실험을 통해 성능비교를 보인다.

양방향 반올림 필터를 이용한 객체 영역 기반 고속 영상 검색 (Fast Image Retrieval Based on Object Regions Using Bidirectional Round Filter)

  • 류권열;강경원
    • 한국멀티미디어학회논문지
    • /
    • 제6권2호
    • /
    • pp.240-246
    • /
    • 2003
  • 본 논문에서는 웨이브릿 변환 영역에서 양방향 반올림 필터를 이용한 객체 영역 기반 고속 영상 검색 방법을 제안한다. 기존의 방법은 웨이브릿 변환 영역의 부대역 전체에서 특징 벡터를 추출하기 때문에 불필요한 배경 정보가 포함됨으로써 검색 효율이 감소하였다. 제안한 방법은 양방향 반올림 필터를 이용하여 객체 영역에서만 특징 벡터를 추출함으로써 불필요한 배경 정보를 제거하여 검색 효율을 향상시킨다. 그리고, 색상 정보에 관한 특징 벡터 수를 감소하여도 일정한 검색 효율을 유지한다. 결론적으로, 영상의 특성에 따라 다소 차이는 있으나 2.5%∼5.3%의 검색 효율이 향상됨을 알 수 있었다.

  • PDF

영역 추출을 위한 Hough 변환 기반 에지 검출과 영역 확장을 통합한 방법 (A Combined Hough Transform based Edge Detection and Region Growing Method for Region Extraction)

  • ;김용권;정진완;이석룡;김덕환
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제36권4호
    • /
    • pp.263-279
    • /
    • 2009
  • CBIR(Content-based Image Retrieval) 시스템의 질의 처리에 사용되는 모양 특징은 크게 경계 기반과 영역 기반 등 두 가지로 나눌 수 있다. 경계기반 특징은 간단하지만 영역 기반 특징에 비해 효과적이지 않다. 영역 기반 모양 특징을 사용하는 대부분의 시스템은 먼저 영역을 추출해야 한다. 하지만 기존의 영역 기반 시스템들은 구현이 복잡하고, 특히 정확한 영역 추출이 어려우며 영역 간의 위치적인 관계가 거리 모델(distance model)에 반영되어 있지 않다. 본 논문에서는 Canny 에지 검출과 Hough 변환에 기반하여 목표 내부의 에지를 검출하고, 이와 함께 영역확장을 이용하여 목표 물체 내부의 영역을 정확히 추출할 수 있는 방법을 제안하였다. 또한 영역 간의 인접 관계를 이용한 수정된 IRM(Integrated Region Matching) 기법을 제안하였다. 이는 모양 특징을 이용한 유사성 검색에서 영상 간의 거리 모델로서 사용된다. 그리고 실험을 통해 수정된 IRM 기법과 우리의 영역 추출 기법이 효과적임을 보였다. 실험 결과는 새로운 영역 추출 방법이 기존의 다른 방법보다 훨씬 우수함을 보여준다.

Wavelet과 신경망을 이용한 내용기반 얼굴 검색 시스템 (Content-based Face Retrieval System using Wavelet and Neural Network)

  • 강영미;정성환
    • 한국컴퓨터산업학회논문지
    • /
    • 제2권3호
    • /
    • pp.265-274
    • /
    • 2001
  • 본 논문에서는 얼굴의 특징 영역에 근거하여 얼굴을 검색할 수 있는 내용기반의 얼굴 검색 시스템을 제안한다. 질의를 위해 이름이나 주민등록번호와 같은 키워드를 사용하는 대신에, 제안한 시스템은 시각적 질의로서 얼굴 영상을 사용한다. 이를 위해, 얼굴 구성 요소를 포함하는 특징 영역을 HSl 칼라 모델이 제공하는 칼라 정보와 Wavelet 변환이 제공하는 에지 정보를 이용하여 추출한 후, 신경망을 통하여 분류ㆍ검색한다. 제안한 검색 시스템은 Oracle DBMS를 사용하여 클라이언트/서버 환경으로 구축되었다. 150개의 다양한 얼굴 영상으로 실험한 결과, 약 88.3%의 검색율을 보였다.

  • PDF

동질성 문턱 값 기반 영상분할에서 과분할 영역 축소 방법 (A Reduction Method of Over-Segmented Regions at Image Segmentation based on Homogeneity Threshold)

  • 한기태
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제1권1호
    • /
    • pp.55-68
    • /
    • 2012
  • 본 논문에서는 영상의 동질성 문턱 값(Homogeneity Threshold:$H_T$)을 이용한 영상분할방법에서 영상의 과분할 발생을 해결하기 위한 개선된 영상분할 방법을 제안한다. $H_T$을 기반으로 한 영역성장(Region Growth) 알고리듬은 선택된 윈도우의 중심화소만을 사용하기 때문에 과 분할이 발생하였으나, 제안한 방법에서는 선택된 윈도우에 대한 동질성 여부를 조사하여 동질성을 만족할 경우 선택된 윈도우 화소전체를 영역병합에 사용하고 선택 윈도우가 동질성 윈도우를 만족하지 않을 때에는 윈도우의 중심화소를 사용함으로써 영역의 과 분할을 현저하게 줄일 수 있었다. 제안한 방법의 타당성을 보이기 위하여 기존방법과 동일한 영상을 동일한 조건으로 실험하였으며, 그 결과 제안한 방법은 기존 방법에 비해 영역의 개수를 40% 이상 줄이면서도 시각적으로 영상의 품질에 차이가 없음을 볼 수 있었다. 특히 분할된 영역의 크기순으로 결합한 영상을 가지고 비교 했을 때, 기존방법에서는 분할된 영역의 큰 영역으로부터 1,000개 이상의 영역을 결합하여도 어떠한 영상인지 구분하기가 힘들었으나, 제안한 방법에서는 10개 내외의 영역만 결합하여도 어떠한 이미지인지 식별할 수 있음을 확인할 수 있었다. 따라서 제안한 방법은 특정 영상으로부터의 객체 추출이나 정보검색 혹은 해부학이나 생물학 분야의 연구 및 영상 시각화와 애니메이션 등 다양한 분야에서 활용될 수 있을 것으로 기대한다.

영역기반 이미지 검색을 위한 칼라 이미지 세그멘테이션 (Color Image Segmentation for Region-Based Image Retrieval)

  • 황환규
    • 전자공학회논문지CI
    • /
    • 제45권1호
    • /
    • pp.11-24
    • /
    • 2008
  • 효율적인 저차원의 인덱싱을 제공하기 위해 이미지를 유사한 성질을 갖는 영역으로 나누고, 나누어진 영역에 대해 유사성을 비교하는 영역 기반 이미지 검색이 제안되었다. 그러나 영역 기반 이미지 검색은 이미지를 유사한 영역으로 나누기 위한 이미지 세그멘테이션 기술이 추가적으로 필요하다. 일반적인 칼라 자연 이미지의 경우 다양한 칼라와 질감 성분을 갖는 영역으로 나누는 것은 많은 어려움이 있다. 본 논문에서는 자동적인 칼라 이미지 세그멘테이션 알고리즘을 제안한다. 제안하는 세그멘테이션 방법은 양자화를 통해 칼라수를 줄이고 양자화 된 이미지를 Fisher의 클래스 선형 판별식을 이용하여 이미지의 전체적인 에지를 보여주는 그레이 레벨 이미지를 생성한다. 이렇게 얻은 그레이 레벨 에지 이미지를 지역적 임계치 비교를 통해 이진 에지 이미지로 변환하고 이진 에지의 끊어진 부분을 찾아내어 인접 에지에 연결하여 영역을 생성한다. 마지막으로 나누어진 영역간의 유사성을 비교하고 유사한 영역을 병합하여 최종 세그멘테이션 결과 이미지를 생성한다. 본 논문에서는 세그멘테이션 알고리즘을 이용한 영역 기반 이미지 검색 시스템을 구현하였으며, 다양한 실험에 의하면 제안한 세그멘테이션 방법이 다양한 이미지에 대하여 양질의 세그멘테이션 결과를 보이는 것으로 나타났다.

인공무릎관절 수술에서의 영역기반 ICP 알고리즘 (Region-based ICP algorithm in TKR operation)

  • 기재홍;이문규;이창양;김동민;유선국;최귀원
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.185-186
    • /
    • 2006
  • Image Guided Surgery(IGS) system has been developed to provide exquisite and objective information to surgeons for surgical operation process. It is necessary that registration technique is important to match between 3D image model reconstructed from image modalities and the object operated by surgeon. Majority techniques of registration in IGS system have been used by recognizing fiducial markers placed on the object. However, this method has been criticized due to its invasive protocol inserting fiducial markers in patient's bone. Therefore, shape-based registration technique using geometric characteristics of the object has been invested to improve the limitation of IGS system. During Total Knee Replacement(TKR) operation, it is challenge to register with high accuracy by using shape-based registration because the area to acquire sample data from knee is limited. We have developed region-based 3D registration technique based on anatomical landmarks on the object and this registration algorithm was evaluated in femur model. It was found that region-based algorithm can improve the accuracy in 3D registration. We expect that this technique can efficiently improve the IGS system.

  • PDF