본 논문은 사이드 스캔 소나 영상을 컨볼루션 신경망으로 학습하여 수중물체를 탐색하는 방법을 다루었다. 사이드 스캔 소나 영상을 사람이 직접 분석하던 방법에서 컨볼루션 신경망 알고리즘이 보강되면 분석의 효율성을 높일 수 있다. 연구에 사용한 사이드 스캔 소나의 영상 데이터는 미 해군 수상전센터에서 공개한 자료이고 4종류의 합성수중물체로 구성되었다. 컨볼루션 신경망 알고리즘은 관심영역 기반으로 학습하는 Faster R-CNN(Region based Convolutional Neural Networks)을 기본으로 하며 신경망의 세부사항을 보유한 데이터에 적합하도록 구성하였다. 연구의 결과를 정밀도-재현율 곡선으로 비교하였고 소나 영상 데이터에 지정한 관심영역의 변경이 탐지성능에 미치는 영향을 검토함으로써 컨볼루션 신경망의 수중물체 탐지 적용성에 대해 살펴보았다.
Kim, Deok-Hwan;Song, Jae-Won;Lee, Ju-Hong;Choi, Bum-Ghi
ETRI Journal
/
제29권5호
/
pp.700-702
/
2007
We present a relevance feedback approach based on multi-class support vector machine (SVM) learning and cluster-merging which can significantly improve the retrieval performance in region-based image retrieval. Semantically relevant images may exhibit various visual characteristics and may be scattered in several classes in the feature space due to the semantic gap between low-level features and high-level semantics in the user's mind. To find the semantic classes through relevance feedback, the proposed method reduces the burden of completely re-clustering the classes at iterations and classifies multiple classes. Experimental results show that the proposed method is more effective and efficient than the two-class SVM and multi-class relevance feedback methods.
In this paper, a new image segmentation method based on merging of two low contrast neighbor regions iteratively is proposed. It is suitable for very low bit rate coding. The proposed method reduces efficiently contour information and preserves subjective and objective image quality. It consists of image segmentation using 4-level hierarchical structure based on mathematical morphology and 1-level region merging structure using the contrast difference of two adjacent neighbor regions. For each segmented region of the third level, two adjacent neighbor regions having low contrast difference value in fourth level based on contrast difference value is merged iteratively. It preserves image quality and shows the noticeable reduction of the contour information, so that it can improve the bottleneck problem of segmentation-based coding at very low bit rate.
본 논문이 제안하는 동작검출 알고리즘은 빛에 대한 불규칙성을 이용하여 동작영역을 탐색하는 방식으로, 기존 3 way-diff 알고리즘에서 주장한 반사된 빛 영역을 수식화하여 추출한다. 즉, 3 way-diff 알고리즘을 확장한 알고리즘이다. 3 way-diff 알고리즘은 연속된 3개의 이미지를 사용하여 반사된 빛 영역을 추출한다. 이 알고리즘에서 주장하는 반사된 빛 영역이란 이미지 제작과정에서 빛에 의해 발생된 영역으로 모든 사물 주변에 미세하게 생성된다. 이러한 영역을 추출하기 위해 하나의 과정을 보인다. 하지만 이 과정은 단순한 작업일 뿐 빛에 대한 수식이 정의되지 않았다. 본 논문은 3 way-diff 알고리즘에서 주장하는 반사된 빛 영역을 잡음의 일종이라 판단하여 반사된 빛 영역을 추출하는 수식을 정의한다. 제안된 알고리즘과 기존 알고리즘들에 실험을 통해 성능비교를 보인다.
본 논문에서는 웨이브릿 변환 영역에서 양방향 반올림 필터를 이용한 객체 영역 기반 고속 영상 검색 방법을 제안한다. 기존의 방법은 웨이브릿 변환 영역의 부대역 전체에서 특징 벡터를 추출하기 때문에 불필요한 배경 정보가 포함됨으로써 검색 효율이 감소하였다. 제안한 방법은 양방향 반올림 필터를 이용하여 객체 영역에서만 특징 벡터를 추출함으로써 불필요한 배경 정보를 제거하여 검색 효율을 향상시킨다. 그리고, 색상 정보에 관한 특징 벡터 수를 감소하여도 일정한 검색 효율을 유지한다. 결론적으로, 영상의 특성에 따라 다소 차이는 있으나 2.5%∼5.3%의 검색 효율이 향상됨을 알 수 있었다.
CBIR(Content-based Image Retrieval) 시스템의 질의 처리에 사용되는 모양 특징은 크게 경계 기반과 영역 기반 등 두 가지로 나눌 수 있다. 경계기반 특징은 간단하지만 영역 기반 특징에 비해 효과적이지 않다. 영역 기반 모양 특징을 사용하는 대부분의 시스템은 먼저 영역을 추출해야 한다. 하지만 기존의 영역 기반 시스템들은 구현이 복잡하고, 특히 정확한 영역 추출이 어려우며 영역 간의 위치적인 관계가 거리 모델(distance model)에 반영되어 있지 않다. 본 논문에서는 Canny 에지 검출과 Hough 변환에 기반하여 목표 내부의 에지를 검출하고, 이와 함께 영역확장을 이용하여 목표 물체 내부의 영역을 정확히 추출할 수 있는 방법을 제안하였다. 또한 영역 간의 인접 관계를 이용한 수정된 IRM(Integrated Region Matching) 기법을 제안하였다. 이는 모양 특징을 이용한 유사성 검색에서 영상 간의 거리 모델로서 사용된다. 그리고 실험을 통해 수정된 IRM 기법과 우리의 영역 추출 기법이 효과적임을 보였다. 실험 결과는 새로운 영역 추출 방법이 기존의 다른 방법보다 훨씬 우수함을 보여준다.
본 논문에서는 얼굴의 특징 영역에 근거하여 얼굴을 검색할 수 있는 내용기반의 얼굴 검색 시스템을 제안한다. 질의를 위해 이름이나 주민등록번호와 같은 키워드를 사용하는 대신에, 제안한 시스템은 시각적 질의로서 얼굴 영상을 사용한다. 이를 위해, 얼굴 구성 요소를 포함하는 특징 영역을 HSl 칼라 모델이 제공하는 칼라 정보와 Wavelet 변환이 제공하는 에지 정보를 이용하여 추출한 후, 신경망을 통하여 분류ㆍ검색한다. 제안한 검색 시스템은 Oracle DBMS를 사용하여 클라이언트/서버 환경으로 구축되었다. 150개의 다양한 얼굴 영상으로 실험한 결과, 약 88.3%의 검색율을 보였다.
본 논문에서는 영상의 동질성 문턱 값(Homogeneity Threshold:$H_T$)을 이용한 영상분할방법에서 영상의 과분할 발생을 해결하기 위한 개선된 영상분할 방법을 제안한다. $H_T$을 기반으로 한 영역성장(Region Growth) 알고리듬은 선택된 윈도우의 중심화소만을 사용하기 때문에 과 분할이 발생하였으나, 제안한 방법에서는 선택된 윈도우에 대한 동질성 여부를 조사하여 동질성을 만족할 경우 선택된 윈도우 화소전체를 영역병합에 사용하고 선택 윈도우가 동질성 윈도우를 만족하지 않을 때에는 윈도우의 중심화소를 사용함으로써 영역의 과 분할을 현저하게 줄일 수 있었다. 제안한 방법의 타당성을 보이기 위하여 기존방법과 동일한 영상을 동일한 조건으로 실험하였으며, 그 결과 제안한 방법은 기존 방법에 비해 영역의 개수를 40% 이상 줄이면서도 시각적으로 영상의 품질에 차이가 없음을 볼 수 있었다. 특히 분할된 영역의 크기순으로 결합한 영상을 가지고 비교 했을 때, 기존방법에서는 분할된 영역의 큰 영역으로부터 1,000개 이상의 영역을 결합하여도 어떠한 영상인지 구분하기가 힘들었으나, 제안한 방법에서는 10개 내외의 영역만 결합하여도 어떠한 이미지인지 식별할 수 있음을 확인할 수 있었다. 따라서 제안한 방법은 특정 영상으로부터의 객체 추출이나 정보검색 혹은 해부학이나 생물학 분야의 연구 및 영상 시각화와 애니메이션 등 다양한 분야에서 활용될 수 있을 것으로 기대한다.
효율적인 저차원의 인덱싱을 제공하기 위해 이미지를 유사한 성질을 갖는 영역으로 나누고, 나누어진 영역에 대해 유사성을 비교하는 영역 기반 이미지 검색이 제안되었다. 그러나 영역 기반 이미지 검색은 이미지를 유사한 영역으로 나누기 위한 이미지 세그멘테이션 기술이 추가적으로 필요하다. 일반적인 칼라 자연 이미지의 경우 다양한 칼라와 질감 성분을 갖는 영역으로 나누는 것은 많은 어려움이 있다. 본 논문에서는 자동적인 칼라 이미지 세그멘테이션 알고리즘을 제안한다. 제안하는 세그멘테이션 방법은 양자화를 통해 칼라수를 줄이고 양자화 된 이미지를 Fisher의 클래스 선형 판별식을 이용하여 이미지의 전체적인 에지를 보여주는 그레이 레벨 이미지를 생성한다. 이렇게 얻은 그레이 레벨 에지 이미지를 지역적 임계치 비교를 통해 이진 에지 이미지로 변환하고 이진 에지의 끊어진 부분을 찾아내어 인접 에지에 연결하여 영역을 생성한다. 마지막으로 나누어진 영역간의 유사성을 비교하고 유사한 영역을 병합하여 최종 세그멘테이션 결과 이미지를 생성한다. 본 논문에서는 세그멘테이션 알고리즘을 이용한 영역 기반 이미지 검색 시스템을 구현하였으며, 다양한 실험에 의하면 제안한 세그멘테이션 방법이 다양한 이미지에 대하여 양질의 세그멘테이션 결과를 보이는 것으로 나타났다.
Image Guided Surgery(IGS) system has been developed to provide exquisite and objective information to surgeons for surgical operation process. It is necessary that registration technique is important to match between 3D image model reconstructed from image modalities and the object operated by surgeon. Majority techniques of registration in IGS system have been used by recognizing fiducial markers placed on the object. However, this method has been criticized due to its invasive protocol inserting fiducial markers in patient's bone. Therefore, shape-based registration technique using geometric characteristics of the object has been invested to improve the limitation of IGS system. During Total Knee Replacement(TKR) operation, it is challenge to register with high accuracy by using shape-based registration because the area to acquire sample data from knee is limited. We have developed region-based 3D registration technique based on anatomical landmarks on the object and this registration algorithm was evaluated in femur model. It was found that region-based algorithm can improve the accuracy in 3D registration. We expect that this technique can efficiently improve the IGS system.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.