DOI QR코드

DOI QR Code

The application of convolutional neural networks for automatic detection of underwater object in side scan sonar images

사이드 스캔 소나 영상에서 수중물체 자동 탐지를 위한 컨볼루션 신경망 기법 적용

  • Received : 2017.12.27
  • Accepted : 2018.03.29
  • Published : 2018.03.31

Abstract

In this paper, we have studied how to search an underwater object by learning the image generated by the side scan sonar in the convolution neural network. In the method of human side analysis of the side scan image or the image, the convolution neural network algorithm can enhance the efficiency of the analysis. The image data of the side scan sonar used in the experiment is the public data of NSWC (Naval Surface Warfare Center) and consists of four kinds of synthetic underwater objects. The convolutional neural network algorithm is based on Faster R-CNN (Region based Convolutional Neural Networks) learning based on region of interest and the details of the neural network are self-organized to fit the data we have. The results of the study were compared with a precision-recall curve, and we investigated the applicability of underwater object detection in convolution neural networks by examining the effect of change of region of interest assigned to sonar image data on detection performance.

본 논문은 사이드 스캔 소나 영상을 컨볼루션 신경망으로 학습하여 수중물체를 탐색하는 방법을 다루었다. 사이드 스캔 소나 영상을 사람이 직접 분석하던 방법에서 컨볼루션 신경망 알고리즘이 보강되면 분석의 효율성을 높일 수 있다. 연구에 사용한 사이드 스캔 소나의 영상 데이터는 미 해군 수상전센터에서 공개한 자료이고 4종류의 합성수중물체로 구성되었다. 컨볼루션 신경망 알고리즘은 관심영역 기반으로 학습하는 Faster R-CNN(Region based Convolutional Neural Networks)을 기본으로 하며 신경망의 세부사항을 보유한 데이터에 적합하도록 구성하였다. 연구의 결과를 정밀도-재현율 곡선으로 비교하였고 소나 영상 데이터에 지정한 관심영역의 변경이 탐지성능에 미치는 영향을 검토함으로써 컨볼루션 신경망의 수중물체 탐지 적용성에 대해 살펴보았다.

Keywords

References

  1. S. Reed, Y. Petillot, and J. Bell, "Automated approach to classification of mine-like objects in sidescan sonar using highlight and shadow information," IEE. Proc.-Radar Sonar Navig., 151, 48-56 (2004). https://doi.org/10.1049/ip-rsn:20040117
  2. S. R. Kim, "The reason why to use acoustic waves on the sea-bottom survey" (in Korean), J. Korean Society of Marine Engineering, 32, 481-489 (2008). https://doi.org/10.5916/jkosme.2008.32.4.481
  3. J. P. Fish and H. A. Carr, Sound Underwater Images: A Guide to the Generation and Interpretation of Side Scan Sonar Data (Lower Cape Publishing Co., Orleans, 1990), pp. 11-47.
  4. O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, "Image net large scale visual recognition challenge," Int. J. Computer Vision, 115, 211-252 (2015). https://doi.org/10.1007/s11263-015-0816-y
  5. A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with deep convolutional neural networks," Advances in neural information processing systems, 1097-1105 (2012).
  6. D. Ciresan, U. Meier, and J. Schmidhuber, "Multi-column deep neural networks for image classification," CVPR, 3642-3649 (2012).
  7. Y. Sun, Y. Chen, X. Wang, and X. Tang, "Deep learning face representation by joint identification-verification," Advances in neural information processing systems, 1988-1996 (2014).
  8. L. Wan, M. Zeiler, S. Zhang, Y. L. Cun, and R. Fergus, "Regularization of neural networks using dropconnect," Proc. ICML-13, 1058-1066 (2013).
  9. K. He, X. Zhang, S. Ren, and J. Sun, "Delving deep into rectifiers: Surpassing human-level performance on imagenet classification," Proc. IEEE international conference on computer vision, 1026-1034 (2015).
  10. P. Blondel, The Handbook of Side Scan Sonar (Springer Science & Business Media, Chichester, UK, 2010), pp. 23-34, 63-65.
  11. S. Ren, K. He, R. Girshick, and J. Sun, "Faster r-cnn: Towards real-time object detection with region proposal networks," IEEE, trans. on pattern analysis and machine intelligence, 39, 1137-1149 (2017). https://doi.org/10.1109/TPAMI.2016.2577031
  12. N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, "Dropout: a simple way to prevent neural networks from overfitting," J. machine learning research, 15, 1929-1958 (2014).
  13. I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning (The MIT Press, Cambridge, MA, USA, 2016), pp. 199-216.
  14. E. Dura, Y. Zhang, X. Liao, G. J. Dobeck, and L. Carin, "Active learning for detection of mine-like objects in side-scan sonar imagery," IEEE, J. Oceanic Engineering, 30, 360-371 (2005). https://doi.org/10.1109/JOE.2005.850931
  15. C. Goutte and E. Gaussier, "A probabilistic interpretation of precision, recall and F-score, with implication for evaluation," ECIR., 5, 345-359 (2005).