• Title/Summary/Keyword: Region merging

Search Result 175, Processing Time 0.027 seconds

Real-Time Object Segmentation of Stereo Matching Image Using the Projection-based Region Merging and the Post Processing of disparity map (변이지도의 후처리 및 프로젝션 기반의 영역병합을 이용한 스테레오 매칭 영상의 실시간 객체분할)

  • Choi, Min-Soo;Shin, Dong-Jin;Han, Dong-Il
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.313-314
    • /
    • 2006
  • Obtained disparity map from the stereo camera by using the several stereo matching algorithms carries lots of noise because of various causes. In our approach, mode filtering and noise elimination technique using the histogram and projection-based region merging methods are adopted for improving the quality of disparity map and image segmentation. The proposed algorithms are implemented in VHDL and the real-time experimentation shows the accurately divided objects.

  • PDF

Texture superpixels merging by color-texture histograms for color image segmentation

  • Sima, Haifeng;Guo, Ping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.7
    • /
    • pp.2400-2419
    • /
    • 2014
  • Pre-segmented pixels can reduce the difficulty of segmentation and promote the segmentation performance. This paper proposes a novel segmentation method based on merging texture superpixels by computing inner similarity. Firstly, we design a set of Gabor filters to compute the amplitude responses of original image and compute the texture map by a salience model. Secondly, we employ the simple clustering to extract superpixles by affinity of color, coordinates and texture map. Then, we design a normalized histograms descriptor for superpixels integrated color and texture information of inner pixels. To obtain the final segmentation result, all adjacent superpixels are merged by the homogeneity comparison of normalized color-texture features until the stop criteria is satisfied. The experiments are conducted on natural scene images and synthesis texture images demonstrate that the proposed segmentation algorithm can achieve ideal segmentation on complex texture regions.

A Color Image Segmentation Using Mean Shift and Region merging method (Mean Shift와 영역병합을 이용한 칼라 영상 분할)

  • Kwak, Nae-Joung;Kwon, Dong-Jin;Kim, Young-Gil
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2006.05a
    • /
    • pp.401-404
    • /
    • 2006
  • Mean shift procedure is applied for the data points in the joint spatial-range domain and achieves a high quality. However, a color image is segmented differently according to the inputted spatial parameter or range parameter and the demerit is that the image is broken into many small regions in case of the small parameter. In this paper, to improve this demerit, we propose the method that groups similar regions using region merging method for over-segmented images. The proposed method converts a over-segmented image in RGB color space into in HSI color space and merges similar regions by hue information. Here, to preserve edge information, the proposed method use by merging constraints to decide whether regions is merged or not. After then, we merge the regions in RGB color space for non-processed regions in HSI color space. Experimental results show the superiority in region's segmentation results.

  • PDF

RAG-based Image Segmentation Using Multiple Windows (RAG 기반 다중 창 영상 분할 (1))

  • Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.6
    • /
    • pp.601-612
    • /
    • 2006
  • This study proposes RAG (Region Adjancency Graph)-based image segmentation for large imagery in remote sensing. The proposed algorithm uses CN-chain linking for computational efficiency and multi-window operation of sliding structure for memory efficiency. Region-merging due to RAG is a process to find an edge of the best merge and update the graph according to the merge. The CN-chain linking constructs a chain of the closest neighbors and finds the edge for merging two adjacent regions. It makes the computation time increase as much as an exact multiple in the increasement of image size. An RNV (Regional Neighbor Vector) is used to update the RAG according to the change in image configuration due to merging at each step. The analysis of large images requires an enormous amount of computational memory. The proposed sliding multi-window operation with horizontal structure considerably the memory capacity required for the analysis and then make it possible to apply the RAG-based segmentation for very large images. In this study, the proposed algorithm has been extensively evaluated using simulated images and the results have shown its potentiality for the application of remotely-sensed imagery.

Design and Implemtation of a Road Congestion Analysis System using Regional Information (영역정보를 이용한 교통 혼잡도 측정 시스템의 설계 및 구현)

  • Choe, Byeong-Geol;Jeong, Seong-Il;An, Cheol-Ung;Kim, Seung-Ho
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.5 no.6
    • /
    • pp.748-757
    • /
    • 1999
  • 본 논문에서는 차량 영역의 추출을 이용한 효율적인 교통 혼잡도 측정 시스템을 설계하고 구현한다. 차량 영역 정보의 추출은 첫째 영역 분할, 둘째 작은 영역의 제거와 영역의 직사각형화, 셋째 영역의 병합 및 삭제의 단계로 나눌 수 있다. 영역 분할 단계에서는 획득한 도로 영상을 영역 기반 영역 분할에 의해 영역으로 분할한다. 그 다음 영역 분할 후의 영역 정보 중 차량 영역을 추출하는데 영향을 미치지 않는 작은 영역들을 제거하고, 남은 영역들을 직사각형화한다. 마지막으로 차선 별로 남은 영역들을 병합, 삭제함으로써 각 차선마다 차량 영역 정보를 추출할 수 있다. 이러한 방법은 배경 영상과 같은 부가적인 정보를 사용하지 않고 도로 자체 영상만으로 교통 혼잡도를 측정할 수 있으며, 그림자의 영향이 없을 경우 적용할 수 있는 기법이다.Abstract In this paper, we designed and implemented an efficient road congestion analysis system using regional information. To extract vehicle regions from a road image, the system process the image in five steps: segmentation, small region elimination, region rectangularization, region merging and region deletion. First, we segment road image by a threshold value. Then, we eliminate useless small regions to extract vehicle region, and perform region rectangularization. Finally, we extract vehicle region of each lane of the road by region merging and deletion. This method has the advantage of measuring road congestion without additional information such as background images. But this method must be applied to road images without shadow.

Automatic Classification Algorithm for Raw Materials using Mean Shift Clustering and Stepwise Region Merging in Color (컬러 영상에서 평균 이동 클러스터링과 단계별 영역 병합을 이용한 자동 원료 분류 알고리즘)

  • Kim, SangJun;Kwak, JoonYoung;Ko, ByoungChul
    • Journal of Broadcast Engineering
    • /
    • v.21 no.3
    • /
    • pp.425-435
    • /
    • 2016
  • In this paper, we propose a classification model by analyzing raw material images recorded using a color CCD camera to automatically classify good and defective agricultural products such as rice, coffee, and green tea, and raw materials. The current classifying agricultural products mainly depends on visual selection by skilled laborers. However, classification ability may drop owing to repeated labor for a long period of time. To resolve the problems of existing human dependant commercial products, we propose a vision based automatic raw material classification combining mean shift clustering and stepwise region merging algorithm. In this paper, the image is divided into N cluster regions by applying the mean-shift clustering algorithm to the foreground map image. Second, the representative regions among the N cluster regions are selected and stepwise region-merging method is applied to integrate similar cluster regions by comparing both color and positional proximity to neighboring regions. The merged raw material objects thereby are expressed in a 2D color distribution of RG, GB, and BR. Third, a threshold is used to detect good and defective products based on color distribution ellipse for merged material objects. From the results of carrying out an experiment with diverse raw material images using the proposed method, less artificial manipulation by the user is required compared to existing clustering and commercial methods, and classification accuracy on raw materials is improved.

Experimental Investigation of Two Parallel Plane Jets (두 개의 평행한 평면 제트의 실험적 연구)

  • Kim Dong-Keon;Yoon Soon-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.2 s.233
    • /
    • pp.214-223
    • /
    • 2005
  • The characteristics of flow on two parallel plane jets was experimentally investigated. The two nozzles each with an aspect ratio of 20 were separated by 6 nozzle widths. Reynolds number based on nozzle width was set to 5,000 by nozzle exit velocity. The particle image velocimetry and pressure transducer were employed to measure turbulent velocity components and mean static pressure, respectively. In case of unventilated parallel plane jets, it was shown that a recirculation zone with sub-atmospheric static pressure was bounded by the inner shear layers of the individual jets and the nozzles plated. There was no recirculation zone in the ventilated parallel plane jets. It was found that the spanwise turbulent intensities of unventilated jets were higher than those of ventilated jets because of the interaction of jets, and the streamwise turbulent intensities of ventilated jets were higher than those of unventilated jets because of the effect of entrainment.

A Study on the Fire Flame Region Extraction Using Block Homogeneity Segmentation (블록 동질성 분할을 이용한 화재불꽃 영역 추출에 관한 연구)

  • Park, Changmin
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.14 no.4
    • /
    • pp.169-176
    • /
    • 2018
  • In this study, we propose a new Fire Flame Region Extraction using Block Homogeneity Segmentation method of the Fire Image with irregular texture and various colors. It is generally assumed that fire flame extraction plays a very important role. The Color Image with fire flame is divided into blocks and edge strength for each block is computed by using modified color histogram intersection method that has been developed to differentiate object boundaries from irregular texture boundaries effectively. The block homogeneity is designed to have the higher value in the center of region with the homeogenous colors or texture while to have lower value near region boundaries. The image represented by the block homogeneity is gray scale image and watershed transformation technique is used to generate closed boundary for each region. As the watershed transform generally results in over-segmentation, region merging based on common boundary strength is followed. The proposed method can be applied quickly and effectively to the initial response of fire.

Color Image Segmentation Using Adaptive Quantization and Sequential Region-Merging Method (적응적 양자화와 순차적 병합 기법을 사용한 컬러 영상 분할)

  • Kwak, Nae-Joung;Kim, Young-Gil;Kwon, Dong-Jin;Ahn, Jae-Hyeong
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.4
    • /
    • pp.473-481
    • /
    • 2005
  • In this paper, we propose an image segmentation method preserving object's boundaries by using the number of quantized colors and merging regions using adaptive threshold values. First of all, the proposed method quantizes an original image by a vector quantization and the number of quantized colors is determined differently using PSNR each image. We obtain initial regions from the quantized image, merge initial regions in CIE Lab color space and RGB color space step by step and segment the image into semantic regions. In each merging step, we use color distance between adjacent regions as similarity-measure. Threshold values for region-merging are determined adaptively according to the global mean of the color difference between the original image and its split-regions and the mean of those variations. Also, if the segmented image of RGB color space doesn't split into semantic objects, we merge the image again in the CIE Lab color space as post-processing. Whether the post-processing is done is determined by using the color distance between initial regions of the image and the segmented image of RGB color space. Experiment results show that the proposed method splits an original image into main objects and boundaries of the segmented image are preserved. Also, the proposed method provides better results for objective measure than the conventional method.

  • PDF

Adaptive Parametric Estimation and Classification of Remotely Sensed Imagery Using a Pyramid Structure

  • Kim, Kyung-Sook
    • Korean Journal of Remote Sensing
    • /
    • v.7 no.1
    • /
    • pp.69-86
    • /
    • 1991
  • An unsupervised region based image segmentation algorithm implemented with a pyramid structure has been developed. Rather than depending on thraditional local splitting and merging of regions with a similarity test of region statistics, the algorithm identifies the homogenous and boundary regions at each level of pyramid, then the global parameters of esch class are estimated and updated with values of the homogenous regions represented at the level of the pyramid using the mixture distribution estimation. The image is then classified through the pyramid structure. Classification results obtained for both simulated and SPOT imagery are presented.