• 제목/요약/키워드: Regenerative Output Data Analysis

검색결과 4건 처리시간 0.017초

REGENERATIVE BOOTSTRAP FOR SIMULATION OUTPUT ANALYSIS

  • Kim, Yun-Bae
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 2001년도 춘계 학술대회 논문집
    • /
    • pp.169-169
    • /
    • 2001
  • With the aid of fast computing power, resampling techniques are being introduced for simulation output analysis (SOA). Autocorrelation among the output from discrete-event simulation prohibit the direct application of resampling schemes (Threshold bootstrap, Binary bootstrap, Stationary bootstrap, etc) extend its usage to time-series data such as simulation output. We present a new method for inference from a regenerative process, regenerative bootstrap, that equals or exceeds the performance of classical regenerative method and approximation regeneration techniques. Regenerative bootstrap saves computation time and overcomes the problem of scarce regeneration cycles. Computational results are provided using M/M/1 model.

  • PDF

State Transformations for Regenerative Sampling in Simulation Experiments

  • 김윤배
    • 산업공학
    • /
    • 제11권3호
    • /
    • pp.89-101
    • /
    • 1998
  • The randomness of the input variables in simulation experiments produce output responses which are also realizations of random variables. The random responses make necessary the use of statistical inferences to adequately describe the stochastic nature of the output. The analysis of the simulation output of non-terminating simulations is frequently complicated by the autocorrelation of the output data and the effect of the initial conditions that produces biased estimates. The regenerative method has been developed to deal with some of the problems created by the random nature of the simulation experiments. It provides a simple solution to some tactical problems and can produce valid statistical results. However, not all processes can he modeled using the regenerative method. Other processes modeled as regenerative may not return to a given demarcating state frequently enough to allow for adequate statistical analysis. This paper shows how the state transformation concept was successfully used in a queueing model and a job shop model. Although the first example can be analyzed using the regenerative method. it has the problem of too few recurrences under certain conditions. The second model has the problem of no recurrences. In both cases, the state transformation increase the frequency of the demarcating state. It was shown that time state transformations are regenerative and produce more cycles than the best typical discrete demarcating state in a given run length.

  • PDF

순차적인 재생적 시뮬레이션에 관한 연구 (A Study on the Sequential Regenerative Simulation)

  • JongSuk R.;HaeDuck J.
    • 한국시뮬레이션학회논문지
    • /
    • 제13권2호
    • /
    • pp.23-34
    • /
    • 2004
  • Regenerative simulation (RS) is a method of stochastic steady-state simulation in which output data are collected and analysed within regenerative cycles (RCs). Since data collected during consecutive RCs are independent and identically distributed, there is no problem with the initial transient period in simulated processes, which is a perennial issue of concern in all other types of steady-state simulation. In this paper, we address the issue of experimental analysis of the quality of sequential regenerative simulation in the sense of the coverage of the final confidence intervals of mean values. The ultimate purpose of this study is to determine the best version of RS to be implemented in Akaroa2 [1], a fully automated controller of distributed stochastic simulation in LAN environments.

  • PDF

순차적 시뮬레이션을 위한 순차적인 Percentile 추정에 관한 연구 (Sequential Percentile Estimation for Sequential Steady-State Simulation)

  • 이종숙;정해덕
    • 정보처리학회논문지D
    • /
    • 제10D권6호
    • /
    • pp.1025-1032
    • /
    • 2003
  • 백분위수는 시뮬레이션 결과의 전체적인 성향을 파악하는데 아주 유용한 측정 기법 중의 하나이다. 그러나, 시뮬레이션으로 수집된 데이터들에 대한 평균이나 표준편차와는 달리 백분위수를 추정하기 위해서는 모든 관측된 데이터들을 저장해야 만 한다, 왜냐하면 백분위수의 추정을 위해서는 관측된 모든 데이를 분류하여 오른차순으로 정렬하는 등 여러 단계의 처리과정이 필요하기 때문이다. 따라서, 백분위수 추정을 위해서는 관측된 모든 데이터를 저장하기 위한 대용량의 저장장치와 정렬을 위한 계산시간 (O($nlog_{2}n$))이 요구된다. 이러한 문제점을 해결하기 위한 여러 백분위수 추정 기법들이 제안되었으나 고정된 샘플 크기의 시뮬레이선(fixed sample size simulation) 을 수행할 경우에만 적용 가능하다. [11, 12, 21]. 본 논문에서는 3가지 백분위수 추정 기법(linear PE, batching PE, spectral $P^2$ PE) 을 순차적인 안정상태 시뮬레이션(sequential steady-state simulation) 에 적용하여 연구하였다. 또한, 3가지의 백분위수 추정 기법들에 대해 coverage 분석을 수행한 결과를 제시하였다.