DOI QR코드

DOI QR Code

Sequential Percentile Estimation for Sequential Steady-State Simulation

순차적 시뮬레이션을 위한 순차적인 Percentile 추정에 관한 연구

  • Published : 2003.10.01

Abstract

Percentiles are convenient measures of the entire range of values of simulation outputs. However, unlike means and standard deviations, the observations have to be stored since calculation of percentiles requires several passes through the data. Thus, percentile (PE) requires a large amount of computer storage and computation time. The best possible computation time to sort n observations is (O($nlog_{2}n$)), and memory proportional to n is required to store sorted values in order to find a given order statistic. Several approaches for extimating percentiles in RS(regenerative simulation) and non-RS, which can avoid difficulties of PE, have been proposed in [11, 12, 21]. In this paper, we implemented these three approaches known as : leanear PE, batching PE, spectral $P^2$ PE in the context of sequential steady-state simulation. Numerical results of coverage analysis of these PE approachs are present.

백분위수는 시뮬레이션 결과의 전체적인 성향을 파악하는데 아주 유용한 측정 기법 중의 하나이다. 그러나, 시뮬레이션으로 수집된 데이터들에 대한 평균이나 표준편차와는 달리 백분위수를 추정하기 위해서는 모든 관측된 데이터들을 저장해야 만 한다, 왜냐하면 백분위수의 추정을 위해서는 관측된 모든 데이를 분류하여 오른차순으로 정렬하는 등 여러 단계의 처리과정이 필요하기 때문이다. 따라서, 백분위수 추정을 위해서는 관측된 모든 데이터를 저장하기 위한 대용량의 저장장치와 정렬을 위한 계산시간 (O($nlog_{2}n$))이 요구된다. 이러한 문제점을 해결하기 위한 여러 백분위수 추정 기법들이 제안되었으나 고정된 샘플 크기의 시뮬레이선(fixed sample size simulation) 을 수행할 경우에만 적용 가능하다. [11, 12, 21]. 본 논문에서는 3가지 백분위수 추정 기법(linear PE, batching PE, spectral $P^2$ PE) 을 순차적인 안정상태 시뮬레이션(sequential steady-state simulation) 에 적용하여 연구하였다. 또한, 3가지의 백분위수 추정 기법들에 대해 coverage 분석을 수행한 결과를 제시하였다.

Keywords

References

  1. N. Blomqvist, 'The Covariance Function of the M/G/1 Queueing System,' Skand. Akt. Tidskr 50, pp.157-174, 1967
  2. D. R. Cox and W. L. Smith, 'Queues,' Methuen, London, 1961
  3. M. A. Crane and D. L. Iglehart, 'Simulating Stable Stochastic Systems: III. Regenerative Processes and Discrete Event Simulations,' Operations Research, Vol.23, No.1, pp. 33-45, 1975 https://doi.org/10.1287/opre.23.1.33
  4. M. A. Crane and A. J Lemoine, 'An Introduction to the Regenerative Method for Simulation Analysis in Lecture Notes in Control and Information Sciences,' Springer Verlag, 1977
  5. J. M. Calvin and M. K. Nakayama, 'Using Permutations in Regenerative Simulations to Reduce Variance,' ACM Transactions on Modeling and Computer Simulation, Vol.8, No.2, pp.l53-193, 1998 https://doi.org/10.1145/280265.280273
  6. G. C. Ewing, K. Pawlikowski and D. McNickle, 'Akaroa 2.5 User's Manual,' Department of Computer Science, University of Canterbury, New Zealand, Technical Report TRCOSC 07/98, 1998
  7. G. S. Fishman, 'Statistical Analysis for Queueing Simulation,' Management Science, Vol.20, pp.363-369, 1973 https://doi.org/10.1287/mnsc.20.3.363
  8. A. V. Gafarian, C. J Ancker and T. Morisaku, 'Evaluation of Commonly Used Rules for Detecting Steady State in Computer Simulation,' Naval res. Logist. Quart., Vol.78, pp.511-529, 1978 https://doi.org/10.1002/nav.3800250312
  9. P. Heidelberger and P. A. W. Lewis, 'Quantile Estimation in Dependent Sequences,' Operations Research, Vol.32, No. 1, pp.185-209, 1984 https://doi.org/10.1287/opre.32.1.185
  10. P. Heidelberger and P. D. Welch, 'A Spectral Method for Confidence Interval Generation and Run Length Control in Simulations,' Communications of the ACM. Vol.25, pp.233-245, 1981 https://doi.org/10.1145/358598.358630
  11. D. L. Iglehart, 'Simulating Stable Stochastic Systems, VI : Quantile Estimation,' Journal of the Association for Computing Machinery, Vol.23, No.2, pp.347-360, 1976 https://doi.org/10.1145/321941.321954
  12. R. Jain and I. Chlamtac, 'The $P^2$ Algorithm for Dynamic Calulation of Percentiles and Histograms Without Storing Observations,' Communications of the ACM, Vol.28, No.10, pp.l076-1085, 1985 https://doi.org/10.1145/4372.4378
  13. J. R. Lee, D. McNickle and K. Pawlikowski, 'A Survey of Confidence Interval Formulae for Coverage Analysis,' Department of Computer Science, University of Canterbury, New Zealand, Technical Report TR-COSC 04/98, 1998
  14. J. R. Lee, D. McNickle and K. Pawlikowski, 'Confidence Interval Estimators for Coverage Analysis in Sequential Steady-State Simulation,' Proceedings of the Twenty Second Australasian Computer Science Conference, pp.87-98, 1999
  15. L. W. Moore, 'Quantile Estimation Methods in Regenerative Processes,' PhD Thesis, Department of Statistics, University of North Carolina, Chapel Hill, 1980
  16. K. Pawlikowski, 'Steady-State Simulation of Queueing Proesses : A Survey of Problems and Solutions,' ACM Computing Surveys, Vol.22, No.2, pp.l22-170, 1990
  17. K. Pawlikowski, V. Yau and D. C. McNickle, 'Distributed and Stochastic Discrete-event Simulation in Parallel Time Streams,' Proceedings of the 1994 Winter Simulation Conference, Lake Buena Vista, Florida, pp.723-730, 1994 https://doi.org/10.1109/WSC.1994.717420
  18. K. E. E. Raatikainen, 'Simultaneous Estimation of Several Percentiles,' SIMULATION, Vol.49, No.4, pp.159-164, 1987 https://doi.org/10.1177/003754978704900405
  19. K. E. E. Raatikainen, 'Sequential Procedure for Simultaneous Estimation of Several Percentiles,' Transactions of The Society for Computer Simulation, Vol.7, No.1, pp.21-44, 1990
  20. C. H. Sauer, 'Confidence Intervals for Queueing Simulations of Computer Systems,' ACM Performance Evaluation Review, Vol.8, No.1-2, pp.46-55, 1979 https://doi.org/10.1145/1041853.1041856
  21. A. F. Seila, 'A Batching Approach to Quantile Estimation in Regenerative Simulations,' Management Science, Vol.28, No.5, pp.573-581, 1982 https://doi.org/10.1287/mnsc.28.5.573
  22. A. F. Seila, 'Estimation of Percentiles in Discrete Event Simulation,' SIMULATION, Vol.39, No.6, pp.193-200, 1982 https://doi.org/10.1177/003754978203900603
  23. L. W. Schruben, H. Singh and L. Tierney, 'Optimal Tests for Initialization Bias in Simulation Output,' Operations Research, Vol.31 , pp.1167-1178, 1983 https://doi.org/10.1287/opre.31.6.1167