• Title/Summary/Keyword: Regeneration rate

Search Result 705, Processing Time 0.038 seconds

Characteristics of Bovine Teeth Whitening in Accordance with Gas Environments of Atmospheric Pressure Nonthermal Plasma Jet

  • Sim, Geon Bo;Kim, Yong Hee;Kwon, Jae Sung;Park, Daehoon;Hong, Seok Jun;Kim, Young Seok;Lee, Jae Lyun;Lee, Gwang Jin;Lim, Hwan Uk;Kim, Kyung Nam;Jung, Gye Dong;Choi, Eun Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.250.2-250.2
    • /
    • 2014
  • Currently, teeth whitening method which is applicable to dental surgery is that physician expertises give medical treatment to teeth directly dealed with a high concentration of hydrogen peroxide and carbamide peroxide. If hydrogen peroxide concentration is too high for treatment of maximized teeth whitening effect [1], it is harmful to the human body [2]. To the maximum effective and no harmful teeth whitening effect in a short period of time at home, we have observed the whitening effect using carbamide peroxide (15%) and a low-temperature atmospheric pressure plasma jet which is regulated by the Food and Drug Administration. The gas supplied conditions of the non-thermal atmospheric pressure plasma jet was with the humidified (0.6%) gas in nitrogen or air at gas flow rate of 1000 sccm. Also, the measurement of chemical species from the jet was carried out using the optical emission spectroscopy (OES), the evidence of increased reactive oxygen species compared to non-humidified plasma jet. We have found that the whitening effect of the plasma is very excellent through this experiment, when bovine teeth are treated in carbamide peroxide (15%) and water vapor (0.2 to 1%). The brightness of whitening teeth was increased up to 2 times longer in the CIE chromaticity coordinates. The colorimetric spectrometer (CM-3500d) can measure color degree of whitening effect.

  • PDF

($H_2S$ Adsorption Characteristics of $KIO_3$ Impregnated Activated Carbon (($KIO_3$ 첨착활성탄의 황화수소 흡착 성능평가)

  • Kim, Jun-Suk;Kim, Myung-Chan;Kang, Eun-Jin;Kim, Myung-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.72-79
    • /
    • 2003
  • The impregnated activated carbons were prepared by the incipient wetness method with the contents of $KIO_3$ varied from 1.0${\sim}$10 wt% as the impregnation material. The specific surface area and micropore volume of the rice hulls activated carbon were $2,600{\sim}2,800$ $m^2$/g and 1.1${\sim}$1.4 cc/g, respectively. With increasing the contents of impregnation materials, the surface area and micropore volume decreased by 3${\sim}$21%. However, The amounts of hydrogen sulfide adsorbed increased by 2.1${\sim}$2.8 times depending on the impregnation content. The optimum contents of $KIO_3$ were 2.4 wt%. Although the breakthrough time and adsorption capacity of hydrogen sulfide decreased with increasing temperature in the case of the unimpregnated activated carbons, they increased by 1.2${\sim}$ 3.2 times for the case of the impregnated activated carbons. The optimum aspect ratio(L/D) was 1.0 and the adsorption amount of hydrogen sulfide enhanced with increasing the gas flow rate. The regeneration temperature was determined as 400$^{\circ}C$ from the TGA experiment. The adsorption capacity of hydrogen sulfide with the impregnated activated carbon decreased gradually as the regeneration continued. The hydrogen sulfide adsorption amount of the regenerated activated carbon up to 4 times was still higher than that of the unimpregnated activated carbon.

Embryogenic Callus Induction and Plant Regeneration in Kentucky bluegrass (Poa pratensis L.) Native to Korea (자생 왕포아풀(Poa pratensis L.)의 배발생 캘러스 유도 및 식물체 재분화)

  • 이재신;심상렬;안병준
    • Korean Journal of Plant Tissue Culture
    • /
    • v.28 no.5
    • /
    • pp.277-281
    • /
    • 2001
  • Embryogenic callus induction and plant regeneration methods were developed for native Kentucky bluegrass (Poa pratenes L.) ecotypes. Mature caryopses and immature inflorescences (20 mm in length) of 4 native ecotypes and 5 foreign cultivars were plated on MS medium (30 g/L sucrose, 3 g/L Phytagel) supplemented with 1 mg/L 2,4-D, and cultured in the dark at 24$^{\circ}C$. Most explants formed calli, but more embryogenic calli were induced from the explants of immature inflorescences than caryopses which produced mostly non-embryogenic rooty calli. In P77 ecotypes, immature inflorescence explants formed embryogenic calli with the rate of 62~95%, and those of field-grown plants were more efficient than greenhouse-grown ones in embryogenic callus induction. Plantlets were regenerated from the embryogenic calli when they were transferred to hormone-free MS medium, and grew to maturity without morphological variations in greenhouse.

  • PDF

High-frequency shoot regeneration from leaf explants through organogenesis in bitter melon (Momordica charantia L.)

  • Thiruvengadam, Muthu;Rekha, K.T.;Yang, Chang-Hsien;Jayabalan, Narayanasamypillai;Chung, Ill-Min
    • Plant Biotechnology Reports
    • /
    • v.4 no.4
    • /
    • pp.321-328
    • /
    • 2010
  • An efficient protocol for in vitro organogenesis was achieved from callus-derived immature and mature leaf explants of Momordica charantia, a very important vegetable and medicinal plant. Calluses were induced from immature leaf explants excised from in vitro (15-day-old seedlings) mature leaf explants of vivo plants (45 days old). The explants were grown on Murashige and Skoog (MS) medium with Gamborg (B5) vitamins containing 30 g $1^{-1}$ sucrose, 2.2 g $1^{-1}$ Gelrite, and 7.7 lM naphthalene acetic acid (NAA) with 2.2 ${\mu}M$ thidiazuron (TDZ). Regeneration of adventitious shoots from callus (30-40 shoots per explant) was achieved on MS medium containing 5.5 ${\mu}M$ TDZ, 2.2 ${\mu}M$ NAA, and 3.3 ${\mu}M$ silver nitrate ($AgNO_3$). The shoots (1.0 cm length) were excised from callus and elongated in MS medium fortified with 3.5 ${\mu}M$ gibberellic acid ($GA_3$). The elongated shoots were rooted in MS medium supplemented with 4.0 ${\mu}M$ indole 3-butyric acid (IBA). Rooted plants were acclimatized in the greenhouse and subsequently established in soil with a survival rate of 90%. This protocol yielded an average of 40 plants per leaf explant with a culture period of 98 days.

Identification of mitochondrial mutant (NADH-dehydrogenase) using PCR method and regeneration of mutants from Zea mays (PCR 기법을 사용한 옥수수 미토콘드리아 변이체 (NADH-dehydrogenase)의 선별과 재분화)

  • 설인환
    • Journal of Life Science
    • /
    • v.8 no.1
    • /
    • pp.8-13
    • /
    • 1998
  • The maize mitochondrial mutant (NCS2) is derived from homologous recombination between genes encoding NADH dehydrogenase subunit 4 and subunit 6. Plants from mitochondria mutants exhibited severe related growth and development including dwarfism and striping on the leaves. Aborted embryos from NCS2 mutants have been rescued and cultured on the N6 medium supplemented with 2,4-D 1 mg/l. Most calli from NCS2 aborted embryos showed slow growing pattern at first stage. However, upon continuous culturing them on the medium, those were segregated into mutant and normal callus lines. These segregations could be detected by using PCR method with three primers. Such segregation seems to be resulted from the preferential growth of normal cells over the mutant cells on the normal culture condition. Therefore, this method can be used for determining rate of indirect cytoplasmic segregation by estimating amplified band intensities. When NCS2 mutant callus lines cultured on regeneration medium, no adventitious shoot induction was observed. However, callus lines with more mitochondria induced adventitious shoots. These studies suggest that mitochondria NADH-dehydrogenase for electron transport in the inner membrane of mitochondria is essential for the differentiation and development of plants.

  • PDF

A Study on the Regeneration Efficiency of the Electric Forklift Using the Variable Hydraulic Motor (가변 유압모터를 이용한 전동지게차 리프트회생 효율에 관한 연구)

  • Park, Yong Soo;Yu, Ying-Xiao;Yun, Jin Su;Do, Tri Cuong;Han, Sung Min;Shin, Jung Woo;Yu, Choong Mok;Ahn, Kyoung Kwan
    • Journal of Drive and Control
    • /
    • v.17 no.3
    • /
    • pp.26-32
    • /
    • 2020
  • In modern society, the energy-saving problem of industrial vehicles is economically and environmentally critical. Energy savings using the potential energy of forklifts are one of the viable solutions to resolving this problem. The basic concept of this study is to operate the hydraulic motor and recharge the battery using the flow rate from the cylinder when loading heavy objects and lowering the fork. To save energy, the torque and rotational speed of the generator should be optimized according to the load and descent speed to increase efficiency. To this end, we propose a system that optimizes energy saving efficiency by controlling the swashplate angle of the variable hydraulic motor through the GA(Genetic-Algorithm). The results were verified by building and comparing fixed motor models and variable motor models using the AMEsim. The results of the study show that the proposed optimized swashplate angle increases the energy saving efficiency by approximately 6%-8%, depending on the working conditions.

In vitro Shoot Propagation Derived from Stem and Shoot Tip in Hovenia dulcis var. koreana Nakai by Plnat Growth Regulators and Light Resources (식물생장조절제 및 광원처리에 따른 헛개나무 줄기와 경정유래 신초의 기내증식)

  • Park, Mi-Young;Wang, Fengbo;Eom, Seok-Hyun;Lee, Seung-Woo
    • Korean Journal of Medicinal Crop Science
    • /
    • v.20 no.1
    • /
    • pp.47-53
    • /
    • 2012
  • This study was conducted to examine effects of plant growth regulators and light resources on the formation of multiple shoot and plant regeneration of Hovenia dulcis var. koreana Nakai. Stem and shoot tip were cultured on MS medium or WPM supplemented with various plant growth regulators. At the single treatment, the highest shoot formation was obtained when stem explants were cultured on WPM supplemented with kinetin $1.0mg{\cdot}L^{-1}$. MS medium containing NAA 0.1 and TDZ $0.1mg{\cdot}L^{-1}$ gave the best results for shoot induction rate and shoot growth in combination treatments. Of the BAP and kinetin tested, BAP $0.5mg{\cdot}L^{-1}$ on WPM was found to be more effective for shoot growth from shoot tip. Under white fluorescent light treatment, shoot growth was much higher than blue, red LED treatments. Root induction from in vitro growth of plantlet was the best on WPM supplemented with $1.0mg{\cdot}L^{-1}$ IBA. The results suggest that selection of plant growth regulators and light resources could be important factor to achieve an efficient in vitro growth.

Micropropagation through Callus Culture in Chinese Foxglove (Rehmannia glutinosa) (지황의 캘러스 배양에 의한 기내 대량증식)

  • 박충헌;성낙술;백기엽;이철희
    • Korean Journal of Plant Tissue Culture
    • /
    • v.25 no.3
    • /
    • pp.171-175
    • /
    • 1998
  • Chinese foxglove (Rehmannia glutinosa) is receiving much attention as one of the principal medicinal crops and the crude drug damand expands rapidly.This study was conducted to obtain the basic breeding information of Chinese foxglove. Effects of supplemental plant growth regulators were investigated on leaf tissue for proliferation. 100% callus formation, 31% plantlet regeneration and 6% root differentiation were obtained by adding 0.5 mg/L NAA and 2.0 mg/L BA. 2,4-D and Zeatin treatment also resulted in 95% increase in callus formation, but shoot was not formed. During the subculture, callus propagation rate recorded 15.4% with 0.2 mg/L NAA and 1.0 mg/L BA and plant regeneration improved on MS medium supplemented with 0.2 mg/L NAA and 0.5 mg/L kinetin. The number of shoot formed ranged from 1.7 on WPM medium to 3.4 on MS medium with 0.1 mg/L NAA and 0.5 mg/L BA. Supplementation of 1.0 g/L activated charcoal improved the In vitro plant growth.

  • PDF

Surface Immobilization of $(1{\to}3)(1{\to}6)-{\beta}-glucan$ onto Biodegradable Polymer for Tissue Regeneration (조직 재생을 위한 Poly (D, L-lactide-co-glycolide) 표면에 $(1{\to}3)(1{\to}6)-{\beta}-glucan$ 고정에 대한 세포 점착 및 성장 효과)

  • Lee, S.G.;Lee, J.B.;Yu, S.M.;Park, J.C.;Choi, J.B.;Kim, J.K.
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.5
    • /
    • pp.218-223
    • /
    • 2006
  • We examined the effects of ${\beta}$-glucan-reinforced PLGA film and scaffold on HDFs (human dermal fibroblast) attachment and proliferation. The PLGA films were prepared by simple solvent-casting method. The prepared films were grafted with $(1{\to}3)(1{\to}6)-{\beta}-glucan$ in various ratios after plasma treatment on surface. The surface of the film was characterized by contact angle measurement, scanning electron microscope (SEM), and Fourier-transform infrared spectrophotometer (FT-IR). The amount of $(1{\to}3)(1{\to}6)-{\beta}-glucan$ in the prepared film was indirectly determined by phenol-sulfuric acid method. The HDFs (Human dermal fibroblasts) were used to evaluate the cell attachment and proliferation on PLGA specimens before and after plasma/${\beta}-glucan$ treatment. The result showed that the plasma treated groups exhibited more mont of ${\beta}-glucan$ might be grafted than the non plasma treated groups. Cell attachment was significantly enhanced in the plasma/${\beta}-glucan$ grafted group after 4 hours incubation (p<0.05) due to the improved hydrophilicity and cytoactivity effect of the ${\beta}-glucan$. The cell proliferation of plasma/${\beta}-glucan$ (2mg/ml) grafted group was the highest rate among the groups (p<0.05).

Chitosan/hydroxyapatite composite coatings on porous Ti6Al4V titanium implants: in vitro and in vivo studies

  • Zhang, Ting;Zhang, Xinwei;Mao, Mengyun;Li, Jiayi;Wei, Ting;Sun, Huiqiang
    • Journal of Periodontal and Implant Science
    • /
    • v.50 no.6
    • /
    • pp.392-405
    • /
    • 2020
  • Purpose: Titanium implants are widely used in the treatment of dentition defects; however, due to problems such as osseointegration failure, peri-implant bone resorption, and periimplant inflammation, their application is subject to certain restrictions. The surface modification of titanium implants can improve the implant success rate and meet the needs of clinical applications. The goal of this study was to evaluate the effect of the use of porous titanium with a chitosan/hydroxyapatite coating on osseointegration. Methods: Titanium implants with a dense core and a porous outer structure were prepared using a computer-aided design model and selective laser sintering technology, with a fabricated chitosan/hydroxyapatite composite coating on their surfaces. In vivo and in vitro experiments were used to assess osteogenesis. Results: The quasi-elastic gradient and compressive strength of porous titanium implants were observed to decrease as the porosity increased. The in vitro experiments demonstrated that, the porous titanium implants had no biological toxicity; additionally, the porous structure was shown to be superior to dense titanium with regard to facilitating the adhesion and proliferation of osteoblast-like MC3T3-E1 cells. The in vivo experimental results also showed that the porous structure was beneficial, as bone tissue could grow into the pores, thereby exhibiting good osseointegration. Conclusions: Porous titanium with a chitosan/hydroxyapatite coating promoted MC3T3-E1 cell proliferation and differentiation, and also improved osseointegration in vitro. This study has meaningful implications for research into ways of improving the surface structures of implants and promoting implant osseointegration.