• Title/Summary/Keyword: Refrigerant Reduction

Search Result 71, Processing Time 0.023 seconds

Development on the Sub-Cooled Hybrid Condenser in Automotive Air-Conditioning System (자동차 냉방시스템에서 건조기 일체형 응축기 개발)

  • 김경훈;장주섭;박종일
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.70-76
    • /
    • 2003
  • An experimental study was performed to understand the heat transfer and fluid dynamic characteristics of Sub-Cooled Hybrid Condenser (SCHC), which conventional condenser and receiver dryer are integrated into. SCHC also employs a sub-cooled refrigerant passages at the end of the condenser in order to supply perfect liquid refrigerant to the expansion unit. Throughout the present study, it was found that the developed SCHC increases in the degree of sub-cooling by 10~100% compared to conventional condenser. The excessive sub-cooling has improved the cooling performance by 10%, and that leads reduction in evaporator outlet air temperature by $1.5^{\circ}C$. Also found through the study is that the refrigerant pressure drop across SCHC is fairly increased due to insertion of the desiccant cartridge in the receiver tank which is composed of zeolite, filter and supporter plate.

External Condensation Heat Transfer Coefficients of Refrigerant Mixtures on a Smooth Tube

  • An, Kwang-Yong;Cho, Young-Mok;Seo, Kang-Tae;Jung, Dong-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.9 no.3
    • /
    • pp.1-9
    • /
    • 2001
  • In this study, condensation heat transfer coefficients (HTCs) of nonazeotropic refrigerant mixtures of HFC32/HFC 134a and HCFC123 at various compositions were measured on a horizontal smooth tube. All data were taken at the vapor temperature of 39$^{\circ}C$ with a wall subcooling of 3~8K. Test results showed that HTCs of tested mixtures were 11.0~85.0% lowed than the ideal values calculated by the mass fraction weighting of the HTCs of the pure components. Thermal resistance due to the diffusion vapor film was partly responsible for the significant reduction of HTCs with these nonazeotropic mixtures. The measured data were compared against thc predicted ones by Colburn and Drew's film model and a good agreement was observed within a deviation of 15%.

  • PDF

An Experimental Study on Fault Detection and Diagnosis Method for a Water Chiller Using Bayes Classifier (베이즈 분류기를 이용한 수냉식 냉동기의 고장 진단 방법에 관한 실험적 연구)

  • Lee, Heung-Ju;Chang, Young-Soo;Kang, Byung-Ha
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.36-41
    • /
    • 2008
  • Fault detection and diagnosis(FDD) system is beneficial in equipment management by providing the operator with tools which can help find out a failure of the system. An experimental study has been performed on fault detection and diagnosis method for a water chiller. Bayes classifier, which is one of classical pattern classifiers, is adopted in deciding whether fault occurred or not. FDD algorithm can detect refrigerant leak failure, when 20% amount of charged refrigerant for normal operation leaks from the water chiller. The refrigerant leak failure caused COP reduction by 6.7% compared with normal operation performance. When two kinds of faults, such as a decrease in the mass flow rate of cooling water and temperature sensor fault of cooling water inlet, are detected, COP is a little decreased by these faults.

  • PDF

Evaluation of Air-side Heat Transfer and Friction Characteristics on Design Conditions of Evaporator (증발기의 설계조건에서 공기측 열전달계수 및 압력강하 산출)

  • 김창덕;이진호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.12
    • /
    • pp.1007-1017
    • /
    • 2003
  • An experimental study on the air-side pressure drop and heat transfer coefficient of slit fin-tube heat exchanger has been carried out. The data reduction methodology for air-side heat transfer coefficients in the literature is not based on a consistent approach. This paper focuses on new method of data reduction to obtain the air-side performance of fin-tube heat exchanger using R22 and recommends standard procedures for dry and wet surface heat transfer estimation in fin-tube heat exchanger having refrigerant on the tube-side. Results are presented as plots of friction f-factor and Colburn j -factor against Reynolds number based on the fin collar outside diameter and compared with previous studies. The data covers a range of refrigerant mass fluxes of 150∼250 kg/$m^2$s with air flows at velocity ranges from 0.3 m/s to 0.8 m/s.

Evaluation of Air-side Heat Transfer and Friction Characteristics on Design Conditions of Condenser (응축기의 설계조건에서 공기측 열전달계수 및 압력강하 산출)

  • 김창덕;전창덕;이진호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.3
    • /
    • pp.220-229
    • /
    • 2003
  • An experimental study on the air-side pressure drop and heat transfer coefficient of slit fin-tube heat exchanger has been carried out. The data reduction methodology for air-side heat transfer coefficients in the literature is not based on a consistent approach. This paper focuses on new method of data reduction to obtain the air-side performance of fin-tube heat exchanger using R22 and recommends standard procedures for dry surface heat transfer estimation in fin-tube heat exchanger having refrigerant on the tube-side. Results are presented as plots of friction f-factor and Colburn j -factor against Reynolds number based on the fin collar outside diameter and compared with previous studies. The data covers a range of refrigerant mass fluxes of 150~250 kg/$m^2$s with air flows at velocity ranges from 0.6 m/s to 1.6 m/s.

Development of Heating and Cooling System with New Heat Exchange Cycle for High Efficiency and Peak Power Reduction Using Real time Constant Refrigerant Pressure Control (실시간 일정압력 제어기술을 적용한 냉난방장치의 피크부하 저감과 에너지 효율 향상을 위한 시스템 개발)

  • Choi, Sun-Young;Lee, Young-Kug;Choi, Myeong-Gwang;Choi, Tae-Won
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.11
    • /
    • pp.53-58
    • /
    • 2015
  • Systemic heating and cooling air conditioning systems are popular in various industrial fields and even home. Recently, the rate of supply of this kind of multi-heat pump has been increased under ESCO financing supporting system. Generally the heat pumping system has a structural simplicity and easy installation benefits. and has good running efficiency under normal designed condition. But under extreme climate condition (over $+30^{\circ}C$, under $-10^{\circ}C$), this system exposes abnormal power consumption. It causes high progressive electric power rates and resultant peak power capacity of power plant. In this paper, a novel system concept of buffering refrigerant accumulator and constant pressure control system to relieve peak power load is proposed and this system's utility is verified with an prototype experimental system.

Development of an Automatic Refrigerant Charging Device for Refrigeration Applications (냉동기용 자동 냉매 충전장치 개발)

  • 김성수;윤희정;홍희기;강용태
    • Journal of Energy Engineering
    • /
    • v.12 no.4
    • /
    • pp.253-258
    • /
    • 2003
  • Manual type manifold gauge has been used for charging the refrigerant in the refrigeration systems. In this case, the refrigerant is released to the ambient during the hose-switching period. :he objectives of this study are to develop a novel automatic refrigerant charging system, and to quantify the effect of the automatic systems on the reduction of the non-condensable gas and the contamination of the compressor oil. The automatic charging system makes the pressure test, vacuum test, and refrigerant charging work very simple and easy because the charging hose does not have to be switched many times. It is found that the amount of water in the SiO$_2$and the compressor oil reduces to l/4 times of that for the manual type manifold gauge and the refrigerant is not released to the ambient at all when the automatic charging system is adopted.

A Study of Lorentz-Meutzner's Two Evaporator Refrigeration System Using Alternative Refrigerant Mixtures (대체혼합냉매를 사용하는 Lorentz-Meutzner의 이중 증발기 냉동 시스템의 성능에 관한 연구)

  • Park, Y.M.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.4 no.2
    • /
    • pp.123-136
    • /
    • 1992
  • A preliminary thermodynamic design model of two-evaporator refrigerator/freezer system is constructed. This system is based on Lorentz-Meutzner cycle using refrigerant mixtures. This model screens alternative refrigerant (R32, R125, R143a, R22, R134a, R152a, R124, R142b, R123) mixtures to select the best performance-giving refrigerant mixtures and its composition for the system. Also, it estimates the effects of cooling temperatures of intercoolers, evaporator's area ratio, cooling load ratio on the performance of the system. The COP of the system ranges from 1.4 to 1.6, which is superior to that of the single evaporator system charged with R12 by 13% to 29%. Among 15 mixtures, R22/R123, R143a/R123, R32/R142b, and R32/R124 (in the order of high COP) are most recommendable. For the case of R22/R123, R22 mass fraction more than 0.5(Load Ratio=1.0) or 0.7(Load Ratio=0.33) is recomended in order to replace R12 without reduction in volumetric capacity when keeping the compressor as the same one. COP has the highest value with X(R22)=0.7 and 0.8, respectively. For the case of R143a/R123, in the similar manner, mass fraction of R143a is more than 0.5 or 0.6 while best performance occurs at X(R143a)=0.8. Higher temperature intercooler is more important for the performance of the system than lower temperature intercooler. The area ratio of evaporators is roughly proportional to load ratio of the evaporators.

  • PDF

Condensation Heat Transfer Coefficients of Binary Refrigerant Mixtures on Enhanced Tubes (열전달 촉진관에서 2원 혼합냉매의 외부 응축열전달계수)

  • 김경기;서강태;채순남;정동수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.2
    • /
    • pp.161-167
    • /
    • 2002
  • In this study, external condensation heat transfer coefficients (HTCs) of two non-azeotropic refrigerant mixtures of HFC32/HFC134a and HF0134a/HCF0123 at various compositions were measured on both low fin and Turbo-C enhanced tubes of 19.0 mm outside diameter All data were taken at the vapor temperature of 39$^{\circ}C$ with a wall subcooling of 3- 8 K. Test results showed that HTCs of the tested mixtures on the enhanced tubes were much lower than the ideal values calculated by the mass fraction weighting of the pure compo- nents'HTCs. Also the reduction of HTCs due to the diffusion vapor film was much larger than that of a plain tube. Unlike HTCs of pure fluids, HTCs of the mixtures measured on enhanced tubes increased as the wall subcooling increased, which was due to the sudden break up of the vapor diffusion film with an increase in wall subcooling. Finally, heat transfer enhancement ratios for mixtures were found to be much lower than those of pure fluids.

Forced Convective Boiling of Refrigerant-Oil Mixtures in a Bundle of Enhanced Tubes Having Pores and Connecting Gaps

  • Park, Ji-Hoon;Kim, Nae-Hyun;Kim, Do-Young;Byun, Ho-Won;Choi, Yong-Min;Kim, Soo-Hwan
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.17 no.3
    • /
    • pp.81-87
    • /
    • 2009
  • The effect of oil on convective boiling of R-123 in an enhanced tube bundle is experimentally investigated at $26.7^{\circ}C$ saturation temperature. The enhanced tube had pores (0.23 mm diameter) and connecting gaps (0.07 mm width), which had been optimized using pure R-123. The effects of oil concentration (0 to 5%), heat flux (10 to $40\;kW/m^2$), mass velocity (8 to $26\;kg/m2^s$) and vapor quality are investigated. The oil significantly reduces the bundle boiling heat transfer coefficient. With 1% oil, the reduction is approximately 35%. Further addition of oil further reduces the heat transfer coefficient. The data are also compared with the pool boiling counterpart. The reduction in the heat transfer coefficient is smaller in a bundle (convective boiling) than in a pool (single-tube pool boiling), with larger difference at a smaller heat flux. Similar to pure R-123 case, the effects of mass velocity and vapor quality are negligible for the convective boiling of R-123/oil mixture.