• Title/Summary/Keyword: Refraction Angle

Search Result 68, Processing Time 0.021 seconds

An Experimental Study on the Refraction Coefficient(K) in Vertical Angle Measurement of Precision Trigonometrical Leveling (정밀3각수준측량(精密3角水準測量)의 연직각관측(鉛直角觀測)에 있어서 굴절계수(屈折係數)(K)에 관한 실험적(實驗的) 연구(研究))

  • Lee, Kye Hak;Jeong, Yeong Dong;Jang, Ji Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.3
    • /
    • pp.117-126
    • /
    • 1985
  • The object of this study is experimental determination of the refraction coefficient(K) which is critical factor in the zenith distance measurement of precision trigonometrical leveling. Thus, the characteristics of seasonal, directional and daily variation of the refraction coefficients according to each district were presented in this paper. Comparing K value by the observed zenith distance with that calculated from the temperature gradient observed at Mt. Mudeung, we obtained satisfactory results.

  • PDF

Development of the Program Used in Calculating and Estimating Anamorphic Prisms (Anamorphic 프리즘을 위한 계산 평가 프로그램 개발)

  • Lee, Dong-Hee
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.13 no.3
    • /
    • pp.51-55
    • /
    • 2008
  • Purpose: To develop the program used in calculating and estimating anamorphic prisms used to construct an anamorphoser. Methods: If there is a program which can show the apex angle and the volume of prism which are decided by the refraction index of anamorphic prisms and the expanding ratio of incident beam, the production of anamorphic prisms can be done accurately. Moreover, it could become a convenient tool to the design and production of whole optical systems using anamorphic prisms. Developing this program, first, we had to induce formulas of prism that decide the apex angle and the arrangement angle of anamorphic prisms with the given refraction index of anamorphic prism and the given expanding ratio of incident beam. Then we programmed them by delphi 6.0 language so that they could be visualized on screen and easily confirmed. Results: We could develop the program used in calculating and estimating anamorphic prisms used to construct an anamorphoser. Conclusions: Judging from the results of applying this developed program to actual business, we could conclude that this program is useful in calculation and production of anamorphic prisms which are used as components of an anamorphoser because this program can offer a lot of accuracy and quickness to producers.

  • PDF

Calculation of Wave Height due to Shoaling, Refraction and Bottom Friction on a Sloping Beach (일정 경사면에서 마찰을 고려한 파랑계산)

  • 서승남;오병철
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.2 no.3
    • /
    • pp.128-133
    • /
    • 1990
  • An equation is presented to calculate wave height due to shoaling, refraction and bottom friction. The equation in an integral form is evaluated by two different methods: A numerical method and an analytical method based on approximation. Both methods are used to calculate wave height and show very good agreement between their results. As shown in the figure of wave height variation vs. relative water depth, an increase of incident angle leads to a decrease in wave height. For the case of normal incident wave, the present equation can be reduced, under some assumptions, to the existing equation of Bretschneider and Reid (1954).

  • PDF

NUMERICAL SIMULATION OF REFRACT10N-DIFFRACTION OF WAVES C ONSIDERING BREAKING-INDUCED CURRENTS

  • Yoon, Sung-Bum;Lee, Jong-In;Lee, Chang-hoon;Park, Joon-Young
    • Water Engineering Research
    • /
    • v.3 no.3
    • /
    • pp.203-213
    • /
    • 2002
  • A wide-angle parabolic approximation equation model considering the interaction between wave and current is employed to simulate the deformation of irregular waves over a submerged shoal. It is found that the model gives qualitative agreements with experimental data for the cases of breaking waves around the shoal. Thus, the effect of breaking-induced current on the refraction-diffraction of waves is well understood.

  • PDF

A Study of Wide-Angle Parabolic Mild Slope Equation (광각 포물형 완경사 방정식에 관한 연구)

  • 김재중;박정철
    • Journal of Korean Port Research
    • /
    • v.12 no.2
    • /
    • pp.281-290
    • /
    • 1998
  • The propagation of water waves over irregular bottom bathymetry and around islands involves many process-shoaling, refraction, energy dissipation and diffraction. Numerical model in this study is developed with the mild slope equation to investigate wave transformation in water of varying depth and combined waves and a current. The method used is splitting method and minimax approximation. The numerical method used in this study is Crank-Nicolson scheme in the FDM. This model is applied to Vincent shoal and compared with laboratory experimental data. The results agreed well with laboratory data. Current effect is considered in this study. This model can be used for the estimation of rip current in the slowly varying topography.

  • PDF

Mode Conversion and Energy Transmission Ratio of Elastic Waves (탄성파의 모드 전환과 에너지 투과율)

  • Kim, Tae-Eon;Chun, Han-Yong;Kim, Jin-Oh;Park, Joon-Kwan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.3
    • /
    • pp.296-307
    • /
    • 2010
  • This paper deals with the energy transmission ratio of the elastic waves transmitting through a solid wall. Based on the displacement of the reflected and transmitted waves relative to the incident waves, the energy transmission ratio of the wave was obtained by multiplying the vibration velocity and stresses. Numerical calculation provided with the transmission ratio and refraction angle corresponding to the incidence angle, and it showed the mode conversion from the incident longitudinal wave to the transmitted transverse wave in particular incidence angle range. The paper established a procedure to find the incidence angle of the maximum energy transmission ratio and confirmed it by experiment.

Continuous Viewing Angle Distribution Control of Liquid Crystal Displays Using Polarization-Dependent Prism Array Film Stacked on Directional Backlight Unit

  • Park, Min-Kyu;Park, Heewon;Joo, Kyung-Il;Jeong, Hee-Dong;Choi, Jun-Chan;Kim, Hak-Rin
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.799-806
    • /
    • 2016
  • We present a polarization-dependent prism array film for controlling the viewing angle distribution of liquid crystal (LC) display panels without loss of light efficiency. On a directional backlight unit, our polarization-dependent prism array film, made into a stacked bilayer with a well-aligned liquid crystalline reactive mesogen (RM) layer on the UV-imprinted prism structure, can continuously control the light refraction function of the prism array by electrically switching incident polarization states of a polarization-controlling layer prepared by a twisted nematic LC mode. The viewing angle control properties of the polarization-dependent prism array film are analyzed under different prism angle and refractive index conditions of the RM layer. A simple analytic model is also presented to describe the intermediate viewing angle distributions with continuously varying applied voltages and incident polarization states.

Prediction of Electromagnetic Wave Propagation in Space Environments Based on Geometrical Optics

  • Kim, Changseong;Park, Yong Bae
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.3
    • /
    • pp.165-167
    • /
    • 2017
  • We predict the electromagnetic wave propagation in space environments using geometrical optics. The effective indices of the troposphere, stratosphere, and ionosphere are computed, and the reflection, refraction, and attenuation of electromagnetic waves in space environments are calculated based on the ray tracing technique and geometrical optics. The influence of the refractive index and loss of atmosphere and the incident angle of the antenna on electromagnetic wave propagation is discussed.

Modeling for Evolution of a 3-dimensional Structure on Semiconductor Substrate (반도체 기판 위의 3차원 구조에 대한 형상 진화 모델링 연구)

  • Jung, Hyun-Su;Won, Tae-Young
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.12
    • /
    • pp.24-28
    • /
    • 2000
  • This paper reports a new calculation method of three dimensional deposeition rate by level set method. To model an advancement of the surface efficiently, we have developed a new iteration method to re-initialize the level set function. For calculating etching and deposition rate by direct flow, we have developed a visibility test module and a refraction and re-sputtering model. Sputter deposition rate with shadow effect and surface refraction is calculated. We report that difference of profiles in cases that sticking coefficient are 1.0 and 0.3. We report that the difference of the deposition rate on bottom of the hole is caused by a difference of visible angle by the shadowing effect.

  • PDF

Trifocal versus Bifocal Diffractive Intraocular Lens Implantation after Cataract Surgery or Refractive Lens Exchange: a Meta-analysis

  • Yoon, Chang Ho;Shin, In-Soo;Kim, Mee Kum
    • Journal of Korean Medical Science
    • /
    • v.33 no.44
    • /
    • pp.275.1-275.15
    • /
    • 2018
  • Background: We compared the efficacy between trifocal and bifocal diffractive intraocular lens (IOL) implantation. Methods: Through PubMed, MEDLINE, EMBASE, and CENTRAL, we searched potentially relevant articles published from 1990 to 2018. Defocus curves, visual acuities (VAs) were measured as primary outcomes. Spectacle dependence, postoperative refraction, contrast sensitivity (CS), glare, and higher-order aberrations (HOAs) were measured as secondary outcomes. Effects were pooled using random-effects method. Results: We included 11 clinical trials, with a total of 787 eyes (395 subjects). The trifocal IOL group showed better binocular distance VA corrected with defocus levels of -0.5, -1.0, -1.5, and -2.5 diopter than the bifocal IOL group (All $P{\leq}0.004$). The trifocal IOL group showed better monocular uncorrected distance and intermediate VAs (mean difference [MD], -0.04 logarithm of the minimum angle of resolution [logMAR]; 95% confidence interval [CI], -0.07, -0.01; P = 0.006 and MD, -0.07 logMAR; 95% CI, -0.13, -0.01; P = 0.03, respectively). Postoperative refraction, glare, CS, and HOAs were not significantly different from each other. Conclusion: The overall findings indicate that trifocal diffractive IOL implantation is better than the bifocal diffractive IOL in intermediate VA, and provides similar or better in distance and near VAs without any major deterioration in the visual quality.