• Title/Summary/Keyword: Reflow temp

Search Result 5, Processing Time 0.016 seconds

Board Level Reliability Evaluation for Package on Package

  • Hwang, Tae-Gyeong;Chung, Ji-Young
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2007.04a
    • /
    • pp.37-47
    • /
    • 2007
  • Factor : Structure Metal pad & SMO size Board level TC test : - Large SMO size better Board level Drop test : - Large SMO size better Factor : Structure Substrate thickness Board level TC test : - Thick substrate better Board level Drop test : - Substrate thickness is not a significant factor for drop test Factor : Material Solder alloy Board level TC test : - Not so big differences over Pb-free solder and NiAu, OSP finish Board level Drop test : - Ni/Au+SAC105, CuOSP+LF35 are better Factor : Material Pad finish Board level TC test : - NiAu/NiAu is best Board livel Drop test : - CuOSP is best Factor : Material Underfill Board level TC test - Several underfills (reworkable) are passed TCG x500 cycles Board level Drop test : - Underfill lots have better performance than non-underfill lots Factor : Process Multiple reflow Board level TC test : - Multiple reflow is not a significant actor for TC test Board level Drop test : N/A Factor : Process Peak temp Board level TC test : - Higher peak temperature is worse than STD Board level Drop test : N/A Factor : Process Stack method Board level TC test : - No big difference between pre-stack and SMT stack Board level Drop test : - Flux dipping is better than paste dipping but failure rate is more faster

  • PDF

A Study on the Ball-off of Via Balls Bonded by Solder Paste (Solder Paste로 접합된 비아볼의 Ball-off에 관한 연구)

  • Kim, Kyoung-Su;Kim, Jin-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.6
    • /
    • pp.575-579
    • /
    • 2004
  • Package reliability test was conducted to investigate the effect of solder paste composition at BGA Package. It was found that the shape and size of the phase form are affected by the processing parameters. The material have used to fill in the via was Sn/36Pb/2Ag and Sn/0.75Cu type solder paste. Sn/36Pb/2Ag and Sn/0.75Cu paste were fabricated on Tape-BGA substrates by screen printing process, and via ball mount data were characterized with variations of dwell time of 85 seconds at reflow peak temperature at 22$0^{\circ}C$ or 24$0^{\circ}C$. The test condition was MRT 30 $^{\circ}C$/60 %RH/96 HR. Failures formed of a ball-off in solder paste process were observed by using a Optical Microscope and SEM(Scanning Electron Microscope). It was concluded that intermetallic layer growth played important roles in increasing solder fatigue strength for addition of Ag composition. The degradation of shear strength of solder composition is discussed.

A Study on The Solderability of Micro-BGA of Sn-3.5Ag-0.7Cu (Sn-3.5Ag-0.7Cu Micro-BCA의 Soldering성 연구)

  • ;;;;Kozo Jujimoto
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.7 no.3
    • /
    • pp.55-61
    • /
    • 2000
  • Sn-37Pb and Sn-3.5Ag-0.7Cu solder balls of 0.3 mm diameter were reflow soldered with the variation of soldering peak temperature and conveyer speed of reflow machine. The peak temperatures far soldering were changed in the range of 220~$240^{\circ}C$ for Sn-37Pb and 230~$260^{\circ}C$ for Sn-3.5Ag-0.7Cu. As the results of experiments, optimum soldering condition for Sn-37Pb was $230^{\circ}C$ of soldering temp., 0.7~0.8 m/min of conveyer speed. The optimum condition for the Sn-3.5Ag-0.7Cu was $250^{\circ}C$ and 0.6 m/min. The maximum shear strength for the soldered joints of Sn-37Pb was 555 gf and of Sn-3.5Ag-0.7Cu was 617 gf. Thickness of the intermetallic compound Cu6Sn5 on the soldered interface was 1.13~1.45 $\mu\textrm{m}$ for Sn-37Pb and 2.5~4.3 $\mu\textrm{m}$ for Sn-3.5Ag-0.7Cu.

  • PDF

A Study on Solderability of Sn-Ag-Cu Solder with Plated Layers in ʼn-BGA (ʼn-BGA에서 Sn-Ag-Cu 솔더의 도금층에 따른 솔더링성 연구)

  • 신규식;정석원;정재필
    • Journal of Welding and Joining
    • /
    • v.20 no.6
    • /
    • pp.59-59
    • /
    • 2002
  • Sn-Ag-Cu solder is known as most competitive in many kinds of Pb-free solders. In this study, effects of solderability with plated layers such as Cu, Cu/Sn, Cu/Ni and Cu/Ni/Au were investigated. Sn-3.5Ag-0.7Cu solder balls were reflowed in commercial reflow machine (peak temp. : 250℃ and conveyer speed : 0.6m/min). In wetting test, immersion speed was 5mm/sec., immersion time 5sec., immersion depth 4mm and temperature of solder bath was 250℃. Wettability of Sn-3.5Ag-0.7Cu on Cu, Cu/Sn (5㎛), Cu/Ni (5㎛), and Cu/Ni/Au (5㎛/500Å) layers was investigated. Cu/Ni/Au layer had the best wettability as zero cross time and equilibrium force, and the measured values were 0.93 sec and 7mN, respectively. Surface tension of Sn-3.5Ag-0.7Cu solder turmed out to be 0.52N/m. The thickness of IMC is reduced in the order of Cu, Cu/Sn, Cu/Mi and Cu/Ni/Au coated layer. Shear strength of Cu/Ni, Cu/Sn and Cu was around 560gf but Cu/Ni/Au was 370gf.

A Study on Solderability of Sn-Ag-Cu Solder with Plated Layers in $\mu-BGA$ ($\mu-BGA$에서 Sn-Ag-Cu 솔더의 도금층에 따른 솔더링성 연구)

  • 신규식;정석원;정재필
    • Journal of Welding and Joining
    • /
    • v.20 no.6
    • /
    • pp.783-788
    • /
    • 2002
  • Sn-Ag-Cu solder is known as most competitive in many kinds of Pb-free solders. In this study, effects of solderability with plated layers such as Cu, Cu/Sn, Cu/Ni and Cu/Ni/Au were investigated. Sn-3.5Ag-0.7Cu solder balls were reflowed in commercial reflow machine (peak temp.:$250^{\circ}C$and conveyer speed:0.6m/min). In wetting test, immersion speed was 5mm/sec., immersion time 5sec., immersion depth 4mm and temperature of solder bath was $250^{\circ}C$. Wettability of Sn-3.5Ag-0.7Cu on Cu, Cu/Sn ($5\mu\textrm{m}$), Cu/Ni ($5\mu\textrm{m}$), and Cu/Ni/Au ($5\mu\textrm{m}/500{\AA}$) layers was investigated. Cu/Ni/Au layer had the best wettability as zero cross time and equilibrium force, and the measured values were 0.93 sec and 7mN, respectively. Surface tension of Sn-3.5Ag-0.7Cu solder turmed out to be 0.52N/m. The thickness of IMC is reduced in the order of Cu, Cu/Sn, Cu/Mi and Cu/Ni/Au coated layer. Shear strength of Cu/Ni, Cu/Sn and Cu was around 560gf but Cu/Ni/Au was 370gf.