• Title/Summary/Keyword: Reflective signal

Search Result 67, Processing Time 0.021 seconds

Development of a Wireless, Battery-free SAW-based Temperature and Humidity Sensor incorporating a Bidirectional Reflective Delay Line (양방향 반사 지연선을 이용한 무선, 무전원 SAW 기반 온, 습도 센서 개발)

  • Lim, Chun-Bae;Lee, Kee-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1515_1516
    • /
    • 2009
  • A 440MHz wireless and passive surface acoustic wave (SAW) based micro-sensor was developed for simultaneous measurement of temperature and humidity. The developed sensor is composed of a SAW reflective delay lines structured by an IDT (Inter-Digital Transducer), four reflectors and humidity sensitive film (polyimide). Polyimide was dry-ecthed by RIE (Reactive Ion Etching) to obtain high roughness, which gives the large reaction area resulting in high sensitivity. In wireless testing using a network analyzer, sharp reflection peaks with high S/N ratio, small signal attenuation, and few spurious peaks were observed in the time domain. High sensitivity towards the temperature and humidiy were also observed in the large concentration range. The obtained sensitivity was $16.8^{\circ}/^{\circ}C$ for temperature sensor and $15.8^{\circ}$/%RH for humidity sensor.

  • PDF

Partial field decomposition using beamforming-based NAH under reflective condition (반사파가 존재할 때 음향홀로그래피에서 빔형성 방법을 이용한 부분음장 분리)

  • 이원혁;강연준
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1323-1328
    • /
    • 2001
  • The theory of NAH is based on the assumption of reflection free. However, it is not always possible to meet this condition in many practical cases. Thus, a decomposition of direct and reflected fields is needed to apply NAH to reflective condition for noise problems. In addition, the decomposition of direct and reflected field can give acoustic characteristics of reflecting surfaces. This paper presents that in this condition the decomposition can also be successfully done by MUSIC(Multiple Signal Classification) power method and beamforming method, and that numerical simulation and real experiments verify its performance.

  • PDF

Peripheral Blood Flow Velocity and Peripheral Pulse Wave Velocity Measured Using a Clip-type Pulsimeter Equipped with a Permanent Magnet and a Hall Device

  • Kim, Keun-Ho;Lee, Sang-Suk
    • Journal of Magnetics
    • /
    • v.20 no.1
    • /
    • pp.47-51
    • /
    • 2015
  • We measured radial arterial pulse signals using a prototype of a clip-type pulsimeter equipped with a permanent magnet and a Hall device, which produced signals through a voltage-detecting circuit. The systolic peak time and the reflective peak time for a temporally pulsed signal were analyzed for an arbitrary pulse wave at one position of a small permanent magnet. The measured value of the peripheral pulse wave velocity was about 1.25-1.52 m/s, demonstrating the accuracy of this new method. To measure the peripheral blood flow velocity, we simultaneously connected the radial artery pulsimeter to a photoplethysmography meter. The average value of the peripheral blood flow velocity was about 0.27-0.50 m/s.

Bidirectional 1.25-Gbps WDM-PON with Broadcasting Function Using A Fabry-Perot Laser Diode and RSOA

  • Pham, Thang T.;Kim, Hyun-Seung;Won, Yong-Yuk;Han, Sang-Kook
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.359-363
    • /
    • 2008
  • A novel WDM-PON system delivering bidirectional 1.25-Gbps data and broadcasting data is proposed. A subcarrier signal modulates optical carriers of a Fabry-Perot-laser-diode based broadband light source to broadcast to all users. Reflective semiconductor optical amplifiers are used as modulators for the baseband data at both the optical line terminal and the remote optical network unit for a channel. Bit error rate and error vector magnitude were measured to demonstrate the proposed scheme.

An Amplified WDM-PON Using Broadband Light Source Seeded Optical Sources and a Novel Bidirectional Reach Extender

  • Kang, Byoung-Wook;Kim, Chul-Han
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.222-226
    • /
    • 2011
  • We demonstrated the feasibility of an amplified wavelength-division multiplexed passive optical network (WDM-PON) architecture based on broadband light source (BLS) seeded optical sources and a novel bidirectional reach extender. Our bidirectional reach extender could provide an amplification of both downstream and upstream signals as well as a BLS output for the upstream WDM signal generation. An error-free 1.25 Gb/s signal transmission over a 100-km long single-mode fiber was achieved in a bidirectional WDM-PON using BLS seeded reflective semiconductor optical amplifier (RSOA) sources.

Examination on the influence of Depth, Size and Interval of Rebar on the Signal of Ground Penetrating Radar (철근의 깊이, 굵기 및 간격이 GPR 신호에 미치는 영향 조사)

  • Kim, Young-Joo;Lee, Seung-Seok;Ahn, Bong-Young;Kim, Young-Gil
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.2
    • /
    • pp.167-174
    • /
    • 2000
  • Ground penetrating radar(GPR) was applied for measuring depths, sizes and intervals of rebars embedded in concrete. A concrete wall was constructed for this study and a sand pool and a concrete block were used for simulation. Result of this study shows that GPR can be used for measuring rebar depths and intervals, even though it is limitary, but that measuring sizes is almost impossible. Simulation with the sand pool was helpful for research on the versatile rebar arrays though signal was not clear as real concrete wall. A concrete block with many cylindrical holes for inserting different sized rebars could not be used for simulator due to many unknown reflective waves. Antenna orientation must be perpendicular to rebars for large reflection signal.

  • PDF

Development of Ultrasound Diagnostic System for Functional Gastrointestinal Disorders using Finite Difference Method (유한차분법을 이용한 기능성 위장 장애 진단용 초음파 시스템의 개발)

  • Park, Won-Pil;Woo, Dae-Gon;Ko, Chang-Yong;Lee, Qyoun-Jung;Lee, Yong-Heum;Choi, Seo-Hyoung;Shin, Tae-Min;Kim, Han-Sung;Lim, Do-Hyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.9
    • /
    • pp.130-139
    • /
    • 2007
  • The disaster from functional gastrointestinal disorders (FGID) has detrimental impact on the quality of life of the affected population. There are, however, rare diagnostic methods for FGID. Our research group identified recently that the gastrointestinal tract well of the patients with FGID became more rigid than that of healthy people when palpating the abdominal regions overlaying the gastrointestinal tract. The objective of the current study is, therefore, to identify feasibility of a diagnostic system for FGID based on ultrasound technique, which can quantify the characteristics above. Two-dimensional finite difference (FD) models (one normal and two rigid models) were developed to analyze the reflective characteristic (displacement) on each soft-tissue layer responded after application of ultrasound signals. Based on the results from FD analysis, the ultrasound system for diagnosis of the FGID was developed and clinically tested via application of it to 40 human subjects with/without FGID who were assigned to Normal and Patient Groups. The results from FD analysis showed that the maximum displacement amplitude in the rigid models (0.12 and 0.16) at the interface between the fat and muscle layers was explicitly less than that in the normal model (0.29). The results from actual specimens showed that the maximum amplitude of the ultrasound reflective signal in the rigid models $(0.2{\pm}0.1Vp-p)$ at the interface between the fat and muscle layers was explicitly higher than that in the normal model $(0.1{\pm}0.0Vp-p)$. Clinical tests using our customized ultrasound system showed that the maximum amplitudes of the ultrasound reflective signals near to the gastrointestinal tract well for the patient group $(2.6{\pm}0.3Vp-p)$ were generally higher than those in normal group $(0.1{\pm}0.2Vp-p)$. These findings suggest that our customized ultrasound system using the ultrasound reflective signal may be helpful to the diagnosis of the FGID.

Development of Battery-free SAW Integrated Microsensor for Real Time Simultaneous Measurement of Humidity and $CO_2$ component (습도와 $CO_2$ 농도의 실시간 동시감지를 위한 무전원 SAW 기반 집적 센서 개발)

  • Lim, Chun-Bae;Lee, Kee-Keun;Wang, Wen;Yang, Sang-Sik
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.16 no.1
    • /
    • pp.13-19
    • /
    • 2009
  • A 440MHz wireless and passive surface acoustic wave (SAW) based chemical sensor was developed on a $41^{\circ}YX\;LiNbO_3$ piezoelectric substrate for simultaneous measurement of $CO_2$ gas and relative humidity (RH) using a reflective delay line pattern as the sensor element. The reflective delay line is composed of an interdigital transducer (IDT) and several shorted grating reflectors. A Teflon AF 2400 and a hydrophilic $SiO_2$ layer were used as $CO_2$ and water vapor sensitive films. The coupling of mode (COM) modeling was conducted to determine optimal device parameters prior to fabrication. According to simulation results, the device was fabricated and then wirelessly measured using the network analyzer. The measured reflective coefficient $S_{11}$ in the time domain showed high signal/noise (S/N) ratio, small signal attenuation, and few spurious peaks. In the $CO_2$ and humidity testing, high sensitivity ($2^{\circ}/ppm$ for $CO_2$ detection and $7.45^{\circ}/%$RH for humidity sensing), good linearity and repeatability were observed in the $CO_2$ concentration ranges of $75{\sim}375ppm$ and humidity levels of $20{\sim}80%$RH. Temperature and humidity compensations were also investigated during the sensitivity evaluation process.

  • PDF

Design of an Underwater Target Simulator (수중표적 시뮬레이터설계)

  • 조내현;예윤해;정연모
    • Journal of the Korea Society for Simulation
    • /
    • v.12 no.4
    • /
    • pp.17-24
    • /
    • 2003
  • In this paper, we propose a model that simulates the reflective waveform from underwater objects by means of Doppler effect, highlight and elongation phenomenon. Also, this paper presents a hardware Implementation of simulation model with the input and output parameters. The underwater target simulator consists of transducer, receiver, transmitter and control parts. According to the experimental results of the simulator, it carried out the performances of real target in response to transmission signal.

  • PDF

The Real-Time Temporal and Spatial Diagnostics of Ultrashort High-Power Laser Pulses using an All-Reflective Single-Shot Autocorrelator

  • Kim, Ha-Na;Park, Seong Hee;Kim, Kyung Nam;Han, Byungheon;Shin, Jae Sung;Lee, Kitae;Cha, Yong-Ho;Jang, Kyu-Ha;Jeon, Min Yong;Miginsky, Sergei V.;Jeong, Young Uk;Vinokurov, Nikolay A.
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.382-387
    • /
    • 2014
  • An all-reflective, simple noncollinear second harmonic (SH) autocorrelator is described for monitoring the shot-to-shot behavior of ultrashort high-power laser pulses. Two mirrors are used for the dispersion-free splitting of a pulse into two halves. One of the mirrors is able to adjust the delay time and angle between two halves of the laser pulse in a nonlinear crystal. We present the possibility of real-time measurement of the pulse duration, peak intensity (or energy), and the pointing jitters of a laser pulse, by analyzing the spatial profile of the SH autocorrelation signal measured by a CCD camera. The measurement of the shot-to-shot variation of those parameters will be important for the detailed characterization of laser accelerated electrons or protons.