• Title/Summary/Keyword: Reflection Lines

Search Result 133, Processing Time 0.022 seconds

Study of Non-uniform Plasma Layer Variation with Optically-Controlled Microwave Pulses

  • Wang, Xue;Yun, Ji-Hun;Kim, Yong-K.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.90-91
    • /
    • 2009
  • We study of the variation on non-uniform plasma in different layer of the semiconductor. The transient response in different plasma layer has been evaluated theoretically. The reflection function of dielectric microstrip lines resulting from the presence of plasma are evaluated by the transmission line model. The diffusion length is small compared to the absorption depth. The variation of characteristic response in plasma layer with microwave pulses which has in localized has been evaluated.

  • PDF

Conversion Efficiency about Various Spacing of Front Metal Grid Lines for Silicon Solar Cells (실리콘 태양전지의 전면 grid 간격 변화에 따른 광 변환 특성 평가)

  • Choi, Jun-Young;Kim, Do-Wan;Lee, Soo-Hong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.5-6
    • /
    • 2006
  • There are typically applied on both rear and front sides of electrical contacts to the solar cell. The front contact formation is particularly sensitive to many parameters. Accordingly patterning of front grid line is an important factor of solar cells. This paper describe the electrical conversion efficiency, inclusive of shading loss that gives various spacing between front metal grid lines. In experiments with variation of spacing. It was verified that the wide spacing of grid fingers could increase the series resistance, also the narrow spacing of grid fingers also implies a grid with a higher density of grid fingers. The sunlight of incidence was more of reflection by grid fingers. In result, the short circuit current, which contribute to conversion efficiency was decreased, because maximum power input was reduced and increase the series resistance.

  • PDF

Design of Bandpass Filter Using Asymmetrical Coupled Microstrip Lines (비대칭으로 결합된 마이크로스트립 선로를 이용한 대역통과 필터의 설계)

  • 문승찬;최원영;윤현보
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.4
    • /
    • pp.585-590
    • /
    • 1993
  • A wide passband filter consisting of 3-stage ssymmetrical coupler can be realized, where the admittance inverter parameters in equivalent circuit of asymmetrical coupled microstrip lines are given as a function of a fundamental design parameter of a bandpass filter. An experimental filter was designed over 22 percend bandwidth centered at 9GHz and optimized using Super-Compact. Measured forward transmission and forward reflection closely matched design data but measured insertion loss was slightly higher (0.7dB) than the designed value.

  • PDF

Impact of pore fluid heterogeneities on angle-dependent reflectivity in poroelastic layers: A study driven by seismic petrophysics

  • Ahmad, Mubasher;Ahmed, Nisar;Khalid, Perveiz;Badar, Muhammad A.;Akram, Sohail;Hussain, Mureed;Anwar, Muhammad A.;Mahmood, Azhar;Ali, Shahid;Rehman, Anees U.
    • Geomechanics and Engineering
    • /
    • v.17 no.4
    • /
    • pp.343-354
    • /
    • 2019
  • The present study demonstrates the application of seismic petrophysics and amplitude versus angle (AVA) forward modeling to identify the reservoir fluids, discriminate their saturation levels and natural gas composition. Two case studies of the Lumshiwal Formation (mainly sandstone) of the Lower Cretaceous age have been studied from the Kohat Sub-basin and the Middle Indus Basin of Pakistan. The conventional angle-dependent reflection amplitudes such as P converted P ($R_{PP}$) and S ($R_{PS}$), S converted S ($R_{SS}$) and P ($R_{SP}$) and newly developed AVA attributes (${\Delta}R_{PP}$, ${\Delta}R_{PS}$, ${\Delta}R_{SS}$ and ${\Delta}R_{SP}$) are analyzed at different gas saturation levels in the reservoir rock. These attributes are generated by taking the differences between the water wet reflection coefficient and the reflection coefficient at unknown gas saturation. Intercept (A) and gradient (B) attributes are also computed and cross-plotted at different gas compositions and gas/water scenarios to define the AVO class of reservoir sands. The numerical simulation reveals that ${\Delta}R_{PP}$, ${\Delta}R_{PS}$, ${\Delta}R_{SS}$ and ${\Delta}R_{SP}$ are good indicators and able to distinguish low and high gas saturation with a high level of confidence as compared to conventional reflection amplitudes such as P-P, P-S, S-S and S-P. In A-B cross-plots, the gas lines move towards the fluid (wet) lines as the proportion of heavier gases increase in the Lumshiwal Sands. Because of the upper contacts with different sedimentary rocks (Shale/Limestone) in both wells, the same reservoir sand exhibits different response similar to AVO classes like class I and class IV. This study will help to analyze gas sands by using amplitude based attributes as direct gas indicators in further gas drilling wells in clastic successions.

Underlayer Geometry Effects on Interconnect Line Characteristics and Signal Integrity (연결선 특성과 신호 무결성에 미치는 밑층 기하구조 효과들)

  • Wee, Jae-Kyung;Kim, Yong-Ju
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.9
    • /
    • pp.19-27
    • /
    • 2002
  • Characteristics of interconnect lines considering underlayer geometries of a silicon substrate and crossing metal lines are experimentally analyzed through elaborately devised patterns. In this work, test patterns for transmission lines having several kinds of underlayer geometries were devised, and the signal characteristics and responses are measured by S-parameter and time domain reflection meter (TDR). The patterns were designed and fabricated with a deep-submicron CMOS DRAM technology having 1 Tungsten and 2 Aluminum metals. From the analysis of measured results on the patterns, it is founded that the effects of underlayter line structures on line parameters (especially line capacitance and resistance) and signal distortions occurred from them cannot be negligible. The results provide useful and insightful understanding in the skew balance of package leads and global signal lines such as high-speed clock and data lines.

Investigation and Processing of Seismic Reflection Data Collected from a Water-Land Area Using a Land Nodal Airgun System (수륙 경계지역에서 얻어진 육상 노달 에어건 탄성파탐사 자료의 고찰 및 자료처리)

  • Lee, Donghoon;Jang, Seonghyung;Kang, Nyeonkeon;Kim, Hyun-do;Kim, Kwansoo;Kim, Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.31 no.4
    • /
    • pp.603-620
    • /
    • 2021
  • A land nodal seismic system was employed to acquire seismic reflection data using stand-alone cable-free receivers in a land-river area. Acquiring reliable data using this technology is very cost effective, as it avoids topographic problems in the deployment and collection of receivers. The land nodal airgun system deployed on the mouth of the Hyungsan River (in Pohang, Gyeongsangbuk Province) used airgun sources in the river and receivers on the riverbank, with subparallel source and receiver lines, approximately 120 m-spaced. Seismic data collected on the riverbank are characterized by a low signal-to-noise (S/N) and inconsistent reflection events. Most of the events are represented by hyperbola in the field records, including direct waves, guided waves, air waves, and Scholte surface waves, in contrast to the straight lines in the data collected conventionally where source and receiver lines are coincident. The processing strategy included enhancing the signal behind the low-frequency large-amplitude noise with a cascaded application of bandpass and f-k filters for the attenuation of air waves. Static time delays caused by the cross-offset distance between sources and receivers are corrected, with a focus on mapping the shallow reflections obscured by guided wave and air wave noise. A new time-distance equation and curve for direct and air waves are suggested for the correction of the static time delay caused by the cross-offset between source and receiver. Investigation of the minimum cross-offset gathers shows well-aligned shallow reflections around 200 ms after time-shift correction. This time-delay static correction based on the direct wave is found essential to improving the data from parallel source and receiver lines. Data acquisition and processing strategies developed in this study for land nodal airgun seismic systems will be readily applicable to seismic data from land-sea areas when high-resolution signal data becomes available in the future for investigation of shallow gas reservoirs, faults, and engineering designs for the development of coastal areas.

Estimation of Color Lines from the Specular Object for Immersive Modeling (실감 모델링을 위한 반짝이는 특성을 지닌 물체에서 색상선 추출 방법 연구)

  • Park, Joung-Wook;Yoo, Hyun-Jin;Lee, Kwan-H.
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.1283-1288
    • /
    • 2006
  • 실감모델링(Immersive modeling)이란 모델링하는 사람이 물체의 특성을 고려하여 오감을 활용하여 모델링하는 것을 의미한다. 실감모델링을 위한 오감 중에서 시각은 모델링하는 사람에게 가장 영향을 많이 주기 때문에 실제와 같은 색상과 형상을 생성하는 것이 중요하다. 그러나 가상현실을 위한 데이터를 실시간으로 다루기 위해 많은 데이터를 사용할 수 없고 처리 과정이 단순해야 하기 때문에 시각데이터를 획득하는 과정에도 이를 고려해야 한다. 그 중에서 반짝이는 특성을 가진 물체의 색을 정확히 표현하기 위한 방법으로 색상선(color line)을 사용한다. 색상선은 반짝이는 특성의 표면의 색을 이색성반사 모델(dichromatic reflection model)로 간주하면 색 특성을 표현하는 선이 생성되게 된다. 본 연구는 반짝이는 물체로부터 색상선을 추출하기 위한 방법으로 노출 시간이 다른 여러 장의 이미지로부터 색상을 추출하는 방법을 제안한다. 노출 시간이 다른 이미지를 사용함으로써 한 장에 의해 분류하기 어려운 색상도 분류 가능하고 하이라이트가 발생하여 색상이 왜곡된 경우도 본래 색이 어떤 색상인지 추정되기 때문에 정확한 색상 추출이 된다. 본 연구에서는 3차원 측정 장비를 이용하여 3차원 형상과 색상이 동시 추출된 모델을 이용하여 렌더링된 결과와 제안된 방법으로 추출된 색상을 적용하여 렌더링된 결과를 비교할 것이다.

  • PDF

Vegetation Cover Characteristics for Five Soils at Chungbuk Prefecture and Tideland Soil Using Remote Sensing Technology (원격탐사(RS) 기법을 이용한 충북지역 5개 토양과 갯벌토양의 식생피복특성)

  • Park, Jong-Hwa
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.6 no.3
    • /
    • pp.9-16
    • /
    • 2003
  • In support of remote sensing applications for monitoring processes of the Earth system, research was conducted to analyze the basic spectral response related to background soil and vegetation cover characteristics in the visible and reflective infrared wavelengths. Surface samples of seven stations were examined. Five soils were from land-field and two soils from tideland areas. The vegetation cover experiment was conducted on seven soil samples with known natural moisture content (%) by weight. To study the effect of vegetation cover, spectral measurements were taken on five or six vegetation cover treatments of the seven soils with 3 replications in air dry conditions. For collecting RS base data, used spectro-radiometer that measures reflection characteristics between 300~1,100nm was used and measured the reflection of vegetation from bean leaves. The relationships were evaluated for both a general soil line and for the individual lines of five soils, under air-dried condition as well as different vegetation cover ratio, through the determination of the line parameters. As vegetation cover ratio in bean leaves increases, features of soil reflectance decrease and those of plant reflectance become more and more apparent. In proportion to vegetation cover rate, near-infrared reflectance increased and visible reflectance decreased. Analysis results are compared to commonly used vegetation indices(RVI and NDVI ).

Effect of Grating Phase in DFB Lasers with an Anti-reflection Coated Mirror (AR 코팅된 DFB 레이저에서 격자 위상의 영향)

  • Kwon, Kee-young;Ki, Jang-geun;Cho, Hyun-mook
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.3
    • /
    • pp.463-468
    • /
    • 2021
  • In this paper, when a refractive index grating and a gain grating were simultaneously present in a DFB laser having a wavelength of 1.55 ㎛, a dielectric film coating was applied so that reflection did not occur on the right mirror surface, so that 𝜌r=0. In case of 𝛿L>0, the characteristics of the oscillation frequency and oscillation gain were analyzed. When the grating phase of the left mirror surface continues to decrease from 𝜋, the graph lines of each mode gradually shift to the left. In case of 𝜅L=10, the threshold gain of the oscillation mode is the lowest. In this case, the mode selectivity is relatively low. From 𝜅L=0.5 to 𝜅L=6, the mode selectivity and the frequency stability are excellent. In the case of DFB lasers with an anti-reflection coated mirror, the threshold gain of the oscillation mode increases but the mode selectivity is about twice as excellent, compared with DFB lasers of having two cleaved facets.

Advanced electromagnetic wave-based method for characterizing defects in cement-based structures using time domain reflectometry

  • Dongsoo Lee;Jong-Sub Lee;Young K. Ju;Yong-Hoon Byun
    • Computers and Concrete
    • /
    • v.33 no.5
    • /
    • pp.621-630
    • /
    • 2024
  • This study presents novel electromagnetic wave-based methods for evaluating the integrity of cement-based structures using time domain reflectometry (TDR). Two cement-based plates with embedded rebars are prepared under sound and defective conditions. TDR tests are carried out using transmission lines with various numbers of artificial joints, and electromagnetic waves are measured to assess the integrity of the plates. The experimental results show that the travel time of electromagnetic waves is consistently longer in sound plates than in defective ones, and an increase in the reflection coefficients is observed in the defect zone of the defective plates. Electromagnetic wave velocities are higher in the defective plates, especially when connectors are present in the transmission line. A novel approach based on the area of the reflection coefficient provides larger areas in the defective plates, and the attenuation effect of the electromagnetic waves induces a difference in the areas of the reflection coefficient between the two defect conditions. An alternative method using the centroid of the defect zone slightly overestimates the location of the defect zone. The length of the defect zone is estimated using the defect ratio and wave velocities of cement, air, and plate. The length of the defect zone can also be calculated using the travel times within the plate, total measured length of the plate, and wave velocities in the cement and air. Therefore, the electromagnetic wave-based methods proposed in this study may be useful for estimating the location and length of defect zones by considering attenuation effects.