• Title/Summary/Keyword: Reflected Signal

Search Result 439, Processing Time 0.034 seconds

A Reconfigurable Directional Coupler Using a Variable Impedance Mismatch Reflector for High Isolation

  • Lee, Han Lim;Park, Dong-Hoon;Lee, Moon-Que
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.4
    • /
    • pp.206-209
    • /
    • 2016
  • This letter proposes a reconfigurable directional coupler that uses a variable impedance mismatch reflector to achieve high isolation characteristics in the antenna front end. The reconfigurable coupler consists of a directional coupler and a single-pole four-throw (SP4T) switch with different load impedances as a variable load mismatch reflector. Selection of the load impedance by the reflector allows cancellation of the reflected signal due to antenna load mismatch and the leakage from the input to isolation port of the directional coupler, resulting in high isolation characteristics. The performance of the proposed architecture in separating the received (Rx) signal from the transmitted (Tx) signal in the antenna front end was verified by implementing and testing the reconfigurable coupler at 917 MHz for UHF radio-frequency identification (RFID) applications. The proposed reconfigurable directional coupler showed an improvement in the isolation characteristics of more than 20 dB at the operation frequency band.

Communication Cable Fault Localization Based on Chirp Signal Parameter Estimation (첩 신호 파라메터 추정 기반 통신 케이블 고장점 탐지에 관한 연구)

  • Lee, Chun-Ku;Han, Seul-Gi;Park, Jin-Bae;Yoon, Tae-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1782_1783
    • /
    • 2009
  • Reflectometry that has been used to localize faults on a cable is introduced. One of the key point of reflectometry is finding time delay between the incident and reflected signals. In this paper, we propose new reflectometry that use Gaussian enveloped linear chirp signal, and use Kalman filter to estimate frequency rate parameter of the chirp signal. From the estimated frequency rate parameter, we can measure the time delay. In a simulation assuming open ended cable, the proposed method is proved to give a good estimation results.

  • PDF

Active-Sensing Lamb Wave Propagations for Damage Identification in Honeycomb Aluminum Panels

  • Flynn, Eric B.;Swartz, R.Andrew;Backman, Daniel E.;Park, Gyu-Hae;Farrar, Charles R.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.4
    • /
    • pp.269-282
    • /
    • 2009
  • This paper presents a novel approach for Lamb wave based structural health monitoring(SHM) in honeycomb aluminum panels. In this study, a suite of three signal processing algorithms are employed to improve the damage detection capability. The signal processing algorithms used include wavelet attenuation, correlation coefficients of power density spectra, and triangulation of reflected waves. Piezoelectric transducers are utilized as both sensors and actuators for Lamb wave propagation. These SHM algorithms are built into a MatLab interface that integrates and automates the hardware and software operations and displays the results for each algorithm to the analyst for side by side comparison. The effectiveness of each of these signal processing algorithms for SHM in honeycomb aluminum panels under a variety of damage conditions is then demonstrated.

Energy Detection Based Spectrum Sensing for Radar Signals in the Presence of Noise Power Uncertainty (잡음 전력 불확실성이 존재하는 환경에서 레이다 신호에 대한 에너지 검파 기반 스펙트럼 센싱)

  • Lim, Chang Heon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.5
    • /
    • pp.982-984
    • /
    • 2017
  • In time domain, a radar signal is divided into two segments: one is for a transmitted pulse and the other is for receiving possible returns from radar targets. Also the received signal is relatively weak and consists of background noise except for the reflected signals from radar targets. In this Letter, we present an energy detection based spectrum sensing for a radar signal in the presence of noise power uncertainty exploiting this characteristics.

The Study on the Ultrasound Signal Processing for Estimating the Attenuation Coefficient - The study on the stability of the attenuation coefficient in silicon-made phantom using both homomorphic process and the modified spectral difference method - (감쇠 계수 추출을 위한 초음파 신호 분석 연구 - Homomorphic Process와 수정된 spectral difference방법을 사용하여 얻은 실리콘 팬텀의 감쇠 계수 안정성에 관한 연구 -)

  • 송인찬;민병구
    • Journal of Biomedical Engineering Research
    • /
    • v.12 no.4
    • /
    • pp.249-254
    • /
    • 1991
  • In the study on the quantitative diagnosis using ultrasound, the stability and precision of tissue characterized parameters are important for the clinical application. We estimate attenuation coefficient introducing homomorphlc process Into the modified spectral differnce method about silicon-madu phantom. We compare the results with those estimated uslng the method used for obtaining the attenuation map image before. Homomorphic process has the effect smoothing the reflected echo signal spectrum, therefore eliminat os the random pattern of the signal spectrum generated by the scatterers. As a result, it Is shown that the stability is enhanced

  • PDF

Bioengineering Approaches to Quantitation of Diagnosis and Treatment Monitoring for Patients with Liver Cancer: Ultrasonic Image Processing by Kalman Filtering (의공학적 기법에 의한 간암의 검진과 치료경과의 정량 : 칼만 필터링 기법에 의한 초음파 영상 처리)

  • 우광방;남상일
    • Journal of Biomedical Engineering Research
    • /
    • v.6 no.1
    • /
    • pp.5-12
    • /
    • 1985
  • In this paper Kalman filtering technique is applied to ultrasound signal to improve resolution capability, Ivhlch is in use of diagnostic imaging systems. The main advantage of Kalman filter algorithm for the analysis of reflected ultrasound signal is its recursive structure which can be easily adapted to tlme varing system. Because soft-tissues, such as liver, act as distributed acoustic low-pass filters which continually change the propagating pulse. tIne can put to practical use above advantage to find a suitable signal generallng model. In state-space description of the system, the 6th order system produces tl)e 1)esc spectral approximation to the source pulse As a result of spectrum analysis, 6th order estimator for two closely spaced ((p.5 mm) reflectors enhances resolution by 4dB-lOdB. By using this result, the possibility to detect even minute tumor is demonstrated.

  • PDF

An Analysis of Highlight Distribution Modeling for High Frequency CW Pulse Signal Reflection on Underwater Target (수중표적의 고주파수 CW 펄스신호 반사를 위한 하이라이트 분포 모델링 해석)

  • 김부일;이형욱;박명호;권우현
    • Journal of the Korea Society for Simulation
    • /
    • v.9 no.3
    • /
    • pp.1-11
    • /
    • 2000
  • This paper proposes the practical echo-signal synthesis models - UTAHID (Underwater TArget by Highlight Distribution) & M-UTAHID(Modified UTAHID) - of underwater target for active sonar engineering At high frequencies all the echo components that are the specular reflected waves and various elastic scattering wave scan be regarded the summation of individual echo from some equivalent scattering centers, so the underwater target is characterized by highlights distributed in spatial target structure. Proposed models are compared with characteristics of random distributed model & equivalent interval highlight model, and analyzed target strength, echo-elongation effect, target time spread loss and so on. Thus these can be efficiently used in various real systems related to underwater target echo-signal synthesis on active sonar and acoustic countermeasure.

  • PDF

A Performance Analysis on the Time Spread Highlight Synthesized Models for Underwater Active Target (수중 능동표적에 대한 시간분산 하이라이트 합성모델 성능분석)

  • 김부일;이형욱;박명호
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.37-44
    • /
    • 2002
  • An echo signal in the active sonar using a high frequency is mainly formed of a specular reflection from the surface of an object along with several equivalent scatter inside, which are characterized by the spatial distribution of the highlights on the object. This thesis proposed a model in which the synthesized echo signal can be expressed as a distributed simulated target. The proposed model is obtained after composing a signal based on the movement of highlights relative to the aspect angle from the discontinuous point of an external hull with a strong reflection from a spheroid underwater target. Because the proposed algorithm includes a synthesis of the signals related to the highlight spacial distribution, it can be applied to all kinds of systems used at a short range, and similar results were obtained to the actual measured results of all reflected signals in previous literature referring to the irregular factor application of an envelope.

Development and performance test of a complex laser interferometer for simultaneously measuring displacement and 2-D angles (변위 각도 동시 측정용 복합 레이저 간섭계의 제작과 특성 분석)

  • Kim J.W.;Kim J.A.;Kang C.S.;Eom T.B.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.573-576
    • /
    • 2005
  • A compact linear and angular displacement measurement device was developed by combining a Michelson interferometer and an autocollimator to characterize the movement of a precision stage. A Michelson interferometer and an autocollimator are typical devices for measuring linear and angular displacement, respectively. By controlling the polarization of reflected beam from the target mirror of the interferometer, some part of light was retro-reflected to the light source and the reflected beam was used for angle measurement. The interferometer and the autocollimator use the same optic axis and the target mirror can be easily and precisely aligned orthogonal to the optic axis by monitoring the autocollimator s signal. The autocollimator was designed for angular resolution of 0.1 arcsec and dynamic range of 60 arcsec. The nonlinearity error of interferometer was minimized by trimming the gain and offset of the photodiode signals. Through the experiments, we evaluate the performance of measurement device and discuss its applications.

  • PDF

A design of optimal filter for single sensor based acoustic reflection control (단일 센서 기반 반향음 제어를 위한 최적 필터 설계)

  • Jeon, Shin-Hyuk;Ji, Youna;Park, Young-cheol;Seo, Young-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.5
    • /
    • pp.353-360
    • /
    • 2017
  • The single sensor based acoustic reflection control system separates the incident and reflected signals from the single sensor output, and reduces the reflected signal by generating an out-of-phase signal from the incident signal component. In this paper, we propose an optimal filter design method for a single sensor based reflection control system. In the proposed method, it is shown that the optimum control filter design is possible by using the measured impulse responses of the reflection and control paths. The reflection control algorithm based on the proposed optimal filter achieves better performance than the conventional adaptive filter-based algorithm and effectively controls the reflection without the initial convergence time. We performed computer simulations using the signals obtained in a 1-dimensional acoustic duct environment, and from the simulation results, it was confirmed that the proposed optimal filter has robust performance even in noisy environment.