• 제목/요약/키워드: Reflected Light Region Identification

검색결과 4건 처리시간 0.017초

Pixel 군집화 Data를 이용한 실시간 반사광 검출 알고리즘 (Real-time Reflection Light Detection Algorithm using Pixel Clustering Data)

  • 황도경;안종우;강호선;이장명
    • 로봇학회논문지
    • /
    • 제14권4호
    • /
    • pp.301-310
    • /
    • 2019
  • A new algorithm has been propose to detect the reflected light region as disturbances in a real-time vision system. There have been several attempts to detect existing reflected light region. The conventional mathematical approach requires a lot of complex processes so that it is not suitable for a real-time vision system. On the other hand, when a simple detection process has been applied, the reflected light region can not be detected accurately. Therefore, in order to detect reflected light region for a real-time vision system, the detection process requires a new algorithm that is as simple and accurate as possible. In order to extract the reflected light, the proposed algorithm has been adopted several filter equations and clustering processes in the HSI (Hue Saturation Intensity) color space. Also the proposed algorithm used the pre-defined reflected light data generated through the clustering processes to make the algorithm simple. To demonstrate the effectiveness of the proposed algorithm, several images with the reflected region have been used and the reflected regions are detected successfully.

이동 로봇을 위한 3차원 거리 측정 장치기반 비포장 도로 인식 (3D Depth Measurement System-based Unpaved Trail Recognition for Mobile Robots)

  • 김성찬;김종만;김형석
    • 제어로봇시스템학회논문지
    • /
    • 제12권4호
    • /
    • pp.395-399
    • /
    • 2006
  • A method to recognize unpaved road region using a 3D depth measurement system is proposed for mobile robots. For autonomous maneuvering of mobile robots, recognition of obstacles or recognition of road region is the essential task. In this paper, the 3D depth measurement system which is composed of a rotating mirror, a line laser and mono-camera is employed to detect depth, where the laser light is reflected by the mirror and projected to the scene objects whose locations are to be determined. The obtained depth information is converted into an image. Such depth images of the road region represent even and plane while that of off-road region is irregular or textured. Therefore, the problem falls into a texture identification problem. Road region is detected employing a simple spatial differentiation technique to detect the plain textured area. Identification results of the diverse situation of unpaved trail are included in this paper.

3 차원 거리 측정 장치 기반 이동로봇용 비선형 도로 인식 (3D Depth Measurement System-based Nonliniar Trail Recognition for Mobile Robots)

  • 김종만;김원섭;신동용
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.517-518
    • /
    • 2007
  • A method to recognize unpaved road region using a 3D depth measurement system is proposed for mobile robots. For autonomous maneuvering of mobile robots, recognition of obstacles or recognition of road region is the essential task. In this paper, the 3D depth measurement system which is composed of a rotating mirror, a line laser and mono-camera is employed to detect depth, where the laser light is reflected by the mirror and projected to the scene objects whose locations are to be determined. The obtained depth information is converted into an image. Such depth images of the road region represent even and plane while that of off-road region is irregular or textured. Therefore, the problem falls into a texture identification problem. Road region is detected employing a simple spatial differentiation technique to detect the plain textured area. Identification results of the diverse situation of Nonlinear trail are included in this paper.

  • PDF

거리센서 계측기반 이동물체의 인식 알고리즘 (vehicle Control Algorithm based on Depth Sensor Measurement System)

  • 김종만;김영민
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 춘계학술대회 논문집 센서 박막재료연구회 및 광주 전남지부
    • /
    • pp.6-9
    • /
    • 2008
  • A 3D depth measurement system is proposed for mobile vehicles. Depth measurement system which is composed of a rotating mirror, a line laser and mono-camera is employed to detect depth, where the laser light is reflected by the mirror and projected to- the scene objects whose locations are to be determined. The obtained depth information is converted into an image. Such depth images of the road region represent even and plane while that of off-road region is irregular or textured. Road region is detected employing a simple spatial differentiation technique to detect the plain textured area. Identification results of the diverse situation of Non-linear trail are included in this paper.

  • PDF