• 제목/요약/키워드: Reflected Light Measurement

검색결과 99건 처리시간 0.031초

The Study of Possibility of Finding a Reagent for Cancer Diagnosis by Urine NMR Measurement

  • Kim, Yong-J.
    • 대한의용생체공학회:의공학회지
    • /
    • 제7권1호
    • /
    • pp.35-40
    • /
    • 1986
  • For quantitative measurement of reflected light from a clinical diagnostic strip, a prototype old reflectance photometer was designed. The strip loader and cassette were made to obtain more accurate reflectance parameters. The strip was illuminated at 45˚c through optical fiber and the intensity of reflected light was determined at rectanguLat angle using a photodiode. The kubelka-munk coefficient and reflection optical density were determined ar four different wavelengths(500, 550, 570 and 610nm) for blood glucose strip. For higher concentration than 300mg/41 about glucose, a saturation state of abforbance was observed at 500, 550 and 570nm. The correlation between glucose concentration and parameters was the best at 610nm.

  • PDF

시간 분해 반사율 측정에 의한 다중산란 매질의 광학 계수 측정 (Measurements of Optical Constants of Biomedical Media Based on Time-Resolved Reflectance)

  • 전계진;박승한;김웅;윤길원;김원기
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1996년도 춘계학술대회
    • /
    • pp.235-239
    • /
    • 1996
  • In recent years, the optical properties of multiple-scattering media like tissue have been studied for their potential applications in medicine. In this work the optical properties of multiple scattering media were investigated using the time-resolved reflectance measurement. The reflected light was measured by time-correlated single photon counting system. The transport scattering and absorption coefficient are related to the initial rapid decay and the subsequent decay in reflected light, respectively. Also the optical properties of the samples were measured by conventional method, ie., using continuous wave light. When the distance between the light source and the detector is over 8mm, the optical coefficient can be measured accurately using the suggested method.

  • PDF

녹색광을 이용한 반사형 광용적맥파측정기의 주변광 간섭시 신호측정 (The Verification of Photoplethysmography Using Green Light that Influenced by Ambient Light)

  • 장기영;고현철;이정직;윤영로
    • 대한의용생체공학회:의공학회지
    • /
    • 제35권5호
    • /
    • pp.125-131
    • /
    • 2014
  • The purpose of this study is to verify the utility of reflected photoplethysmography sensor using two green light emitting diodes that influenced by ambient light. Recently it has been studied that green light emitting diode is suitable for light source of reflected photoplethysmography sensor at low temperature and high temperature. Another study showed that, green light is better for monitoring heart rate during motion than led light. However, it has a bad characteristic about ambient light noise. To verify the utility of reflected photoplethysmography sensor using green light emitting diode, this study measures the photoplethysmography signal that is distorted by ambient light and will propose a solution. This study has two parts of research method. One is measurement system that composed sensor and board. The sensor is made up PE-foam and Non-woven fabric for flexible sensor. The photoplethysmography signal is measured by measurement board that composed high-pass filter, low-pass filter and amplifier. Ambient light source is light bulb and white light emitting diode that has three steps brightness. Photoplethysmography signal is measured with lead II electrocardiography signal at the same time and it is measured at the finger and radial artery for 1 minute, 1000 Hz sampling rate. The lead II electrocardiography signal is a standard signal for heart rate and photoplethysmography signal that measured at the finger is a standard signal for waveform. The test is repeated 3 times using three sensor. The data is processed by MATLAB to verify the utility by comparing the correlation coefficient score and heart rate. The photoplethysmography sensor using two green light emitting diodes is shown better utility than using one green light emitting diode and red light emitting diode at the ambient light. The waveform and heart rate that measured by two green light emitting diodes are more identical than others. The amount of electricity used is less than red light emitting diode and error peak detectability factor is the lowest.

경면 거칠기 측정을 위해 레이저 입사 강도 조정에 의한 정반사 광량 추정 알고리즘 개발 (Estimation of Specular Light Power by Adjusting Incident Laser Power for Measuring Mirror-Like Surface Roughness)

  • 서영호;김주년;안중환
    • 한국정밀공학회지
    • /
    • 제21권6호
    • /
    • pp.94-101
    • /
    • 2004
  • From the Beckmann's reflection model of wave incident, reflected light from a surface is known to have not only specular but also diffuse components. The specular component dominant a surface for a mirror-like surface is distributed on the almost the same area as the spot on the surface, but the diffuse component region dominant f3r a rough surface spreads scattered on the larger areas than the spot. Therefore, statistic parameters from the scattered light distribution are more meaningful in the diffuse region, while the magnitude of rather meaning in the specular region. In usual, there need two sensors to acquire two kinds of information: Photo-detector for light intensity magnitude and image sensor for light intensity distribution. But dual sensor scheme requires a beam splitter usually to feed light to each sensor, and moreover there is not a combination rule to relieve the different sensor characteristics. In this study a new method is proposed for acquisition of the dual information using only an image sensor. Specular region is established on an image area being distinguished from a diffuse component, and laser power is adjusted so that no pixel of the image sensor in the specular region is saturated. Simulation based on the light reflection theory and the experimental results are quite well matched, and thus the proposed method was proved to be very useful for mirror-like surface measurement.

레이저 반사광을 이용한 미세 표면 거칠기 측정 알고리즘에 관한 연구 (Study on Algorithm of Micro Surface Roughness Measurement Using Laser Reflectance Light)

  • 최규종;김화영;안중환
    • 대한기계학회논문집A
    • /
    • 제32권4호
    • /
    • pp.347-353
    • /
    • 2008
  • Reflected light can be decomposed into specular and diffuse components according to the light reflectance theory and experiments. The specular component appears in smooth surfaces mainly, while the diffuse one is visible in rough surfaces mostly. Therefore, each component can be used in forming their correlations to a surface roughness. However, they cannot represent the whole surface roughness seamlessly, because each formulation is merely validated in their available surface roughness regions. To solve this problem, new approaches to properly blend two light components in all regions are proposed in this paper. First is the weighting function method that a blending zone and rate can be flexibly adjusted, and second is the neural network method based on the learning from the measurement data. Simulations based on the light reflectance theory were conducted to examine its performance, and then experiments conducted to prove the enhancement of the measurement accuracy and reliability through the whole surface roughness regions.

선형 레이저와 회전 평면경 및 단일 카메라를 이용한 거리측정 시스템 (Depth Measurement System Using Structured Light, Rotational Plane Mirror and Mono-Camera)

  • 윤창배;김형석;;손홍락;이혜정
    • 제어로봇시스템학회논문지
    • /
    • 제11권5호
    • /
    • pp.406-410
    • /
    • 2005
  • A depth measurement system that consists of a single camera, a laser light source and a rotating mirror is investigated. The camera and the light source are fixed, facing the rotating mirror. The laser light is reflected by the mirror and projected to the scene objects whose locations are to be determined. The camera detects the laser light location on object surfaces through the same mirror. The scan over the area to be measured is done by mirror rotation. Advantages are 1) the image of the light stripe remains sharp while that of the background becomes blurred because of the mirror rotation and 2) the only rotating part of this system is the mirror but the mirror angle is not involved in depth computation. This minimizes the imprecision caused by a possible inaccurate angle measurement. The detail arrangement and experimental results are reported.

2차 회절광 차단을 위한 분광 광도계 설계 (Design Spectrophotometer for Blocking the $2^{nd}$ diffracted Light)

  • 홍영주;곽윤근;김수현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.875-880
    • /
    • 2004
  • Stray light is the light except the light of the analytic wavelength and the source of measurement error of absorbance. Some experimental results showed that diffractive grating is the major factor of stray light in spectrophotometer. Through the ray tracing with the software tool, classified the paths of the diffractive light from grating and found the range of wavelength which reach the exit slit. The quantity of the stray light(0.025%) is more than the minimum limit of stray light(0.01%) of the single monochromator. A novel optical layout design method, which prevent the reflected rays entering the diffractive grating is proposed.

  • PDF

점접촉 탄성 유체 윤활에서의 띠 무의 강도에 의한 유막 두께 측정 (Measurement of Film Thickness by Fringe Intensity Analysis in Point Contact Elastohydrodynamic Lubrication)

  • 장시열;최언진
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1999년도 제30회 추계학술대회
    • /
    • pp.103-113
    • /
    • 1999
  • Point contact film thickness in elastohydrodynamic lubrication (EHL) is analyzed by the image processing method for the monochromatic incident light. Interference between the reflected lights both on Cr coating of glass disk and on super finished ball makes circular fringes, which are regarded as film thickness together with numbering of fringe order. In this study, we developed technology to measure the film thickness by analyzing dark and bright intensity waves which results from monochrome green light. Two typical fringe patterns only with intensity values 3re examined for the measurement of point contact EHL film thickness. We expect that this technology will give valuable clue to improve color image processing analysis for high resolution of EHL film thickness with white incident light.

  • PDF

3차원 거리 측정 장치를 이용한 물체 인식 (Object Recognition using 3D Depth Measurement System.)

  • 김성찬;고수홍;김형석
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2006년도 하계종합학술대회
    • /
    • pp.941-942
    • /
    • 2006
  • A depth measurement system to recognize 3D shape of objects using single camera, line laser and a rotating mirror has been investigated. The camera and the light source are fixed, facing the rotating mirror. The laser light is reflected by the mirror and projected to the scene objects whose locations are to be determined. The camera detects the laser light location on object surfaces through the same mirror. The scan over the area to be measured is done by mirror rotation. The Segmentation process of object recognition is performed using the depth data of restored 3D data. The Object recognition domain can be reduced by separating area of interest objects from complex background.

  • PDF