• Title/Summary/Keyword: Refining Industry

Search Result 161, Processing Time 0.026 seconds

Effects of Fiber Wall Thickness on Paper Properties Using CLSM (CLSM을 이용한 고해과정 중 섬유벽 두께 변화의 종이 특성 영향 분석)

  • 김서환;박종문;김철환
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.1
    • /
    • pp.39-45
    • /
    • 1999
  • Refining in papermaking plays an important role in changing fiber properties as well as paper properties. The major effects of refining on pulp fibers are internal and external fibrillation, fiber shortening, and fines formation. Many workers showed that internal fibrillation of the primary refining effects was most influential in improving paper properties. In particular, refining produces separation of fiber walls into several lamellae, thus causing fiber wall swelling with water penetration. This leads to the increase of fiber flexibility and of fiber-to-fiber contact during drying. If the fibers are very flexible, they will be drawn into close contact with each other by the force of surface tension as the water is removed during the drainage process and drying stages. In order to study the effect of fiber wall delamination on paper properties, cross-sectional image of fibers in a natural condition had to be generated without distortion. Finally, it was well recognized that confocal laser scanning microscope (CLSM) could be one of the most efficient tool for creating and quantifying fiber wall delamination in combination with image analysis technique. In this study, the CLSM could be used not only to observe morphological features of transverse views of swollen fibers refined under low and high intensity, but also to investigate the sequence of fiber wall delamination and fiber wall breakage. From the CLSM images, increasing the specific energy or refining decreased the degree of fiber collapse, fiber cross-sectional area, fiber wall thickness and lumen area. High intensity refining produced more external fibrillation.

  • PDF

Detail analysis of the peak disappearance of minor phase in mechanically alloyed samples(II) (기계적 합금화 시료에서 미소상 피이크의 소멸현상 해석(II))

  • Kim, Hye-Sung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.1
    • /
    • pp.27-34
    • /
    • 2001
  • Refining of powder particles and their dissolution into the Al matrix during mechanical alloying(MA) were investigated by using X-ray diffraction(XRD) transmission electron microscopy (TEM) functions of alloy composition, milling time and ball to powder ratio(BPR). It is found that Ti particles less than 20nm are observed in a dark field image of mechanically alloyed Al-10wt%Ti whose XHD pattern exhibits no Ti peak. The observed change of lattice constant of AI indicates that about 1 wt%Ti can he solved in Al after MA for a long time, independent of alloy composition, milling time and BPR, suggesting that most of Ti particles arc retained in the Al matrix. It is concluded that the disappearance of XRD peaks in mechanically alloyed Al-10wt%Ti is not simply attributable to the dissolution of Ti into Al, but associated mainly with extreme refining and/or heavy straining of Ti Particles.

  • PDF

Quantitative Analysis of Pulp fiber Characteristics that Affect Paper Properties (II) (종이의 물성에 영향하는 섬유특성의 정량적 해석(II))

  • 이강진;박종문
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.32 no.2
    • /
    • pp.35-39
    • /
    • 2000
  • Refining is very important process of fibers treatment for proper paper properties. An extent of refining is usually measured by freeness, although freeness gives complicated meanings. One of a direct way of studying the refining effects on pulp fibers is making photomicrographs of beaten fibers. The conventional microscopy like light microscopy(LM) and scanning electron microscopy(SEM) require to preserve the wet structure of pulp fibers morphologically since most of papermaking process is carried out almost entirely in water. Recently developed microscopy, especially confocal laser scanning microscopy(CLSM), offers the possibility of examining fully hydrated pulp fibers. Cross-sectional images of wet pulp fibers are also generated using optical sectioning by CLSM and image analysis in order to verify and quantify the extent of fiber wall swelling indicating the internal fibrillation. At low beating load such as 2.5 kgf, in the same freeness, breaking length is higher than that of high beating load such as 5.6 kgf. fiber wall thickness at low beating load is greater than that at high beating load. This result is accounted for the fact that internal fibrillation in the low beating load was high.

  • PDF

Pore Structure and Reflectivity of Light of Paper

  • Won, Jong-Myoung
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.38 no.3 s.116
    • /
    • pp.7-12
    • /
    • 2006
  • The pore structure of paper was modified by the application of the blending of pulp, refining, and filler particle size and ash content. It was conformed that the reflectivity of paper can be modified by the combination of the above parameters. It was also found that the change of reflectivity of paper was greatly dependent on the pore structure, such as average pore size, pore size distribution and porosity. The average pore size was decreased with addition of HwBKP, but the smallest average pore size was obtained from the addition of 80% HwBKP Refining of pulp decreased both average pore size and the reflectivity of paper. The pore size distribution of filled paper can be varied by the combination of filler particle size and ash content

Controlled Hydrodynamic Cavitation-assisted Nanoreactor for Less Chemical-Higher Yield in Neutralization of Vegetable Oil Refining Process (Less Chemical-Higher Yield 탈산공정을 위한 수력 공동현상 유도 나노리엑터)

  • Kim, Ji-In
    • Food Science and Industry
    • /
    • v.51 no.2
    • /
    • pp.114-126
    • /
    • 2018
  • The production of high quality oil to meet new standard needs a 'next generation' innovative oil refining tool in paradigm shift. 'Nanoneutralization' using controlled hydrodynamic cavitation-assisted Nanoreactor is successfully being introduced and commercialized into edible oil industry and it plays a key driver for sustainable development of food processing. This emerging technology using bubble dynamics as a consequence of Bernoulli's principle by hydrodynamic cavitation in Venturi-designed multi-flow through cell is radically changing the conventionally chemical-oriented neutralization. Nanoneutralization derived by the creation of nanometer-sized bubbles formed through scientifically structured geometric channels under high pressure has been proven to improve mass transfer and reaction rate so substantially reduce the chemicals required for refined vegetable oil and to increase oil yield while even improving oil quality. More researches on science behind this revolutionary technology will help usto better understand the principle and process hence makes its potential applications expandable in extraction, refining and modification of fats and oils processing.

Evaluation of Beatability of Two Kinds of Cotton Linter Pulps (면 린터 펄프 종류에 따른 고해적성 평가)

  • Shin, Hyeon-Sik;Park, Jong-Moon;Lee, Jin-Ho;Kim, Jeong-Jung;Kil, Jung-Ha
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.45 no.5
    • /
    • pp.56-63
    • /
    • 2013
  • In this study, paper mill applicability of two kinds of cotton pulps which have different initial freeness, fiber length and intrinsic fiber strength were investigated. Basic properties such as CED viscosity, fiber length, and crystallinity of major two kinds of cotton pulps were analyzed, and beatability of cotton pulps and physical properties of handsheet made from two kinds of cotton pulps were compared. Laboratory beating was performed at different refining conditions such as refining loads and freenesses. Relationship between beating degree and physical properties of handsheet were compared to seek optimum condition of refining for different cotton pulps application to paper mill.

Mechanical Impact Treatment on Pulp fibers and Their Handsheet Properties

  • Yung B. Seo;Kim, Dukki;Lee, Jong-Hoon;Yang Jeon
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.34 no.5
    • /
    • pp.56-62
    • /
    • 2002
  • Alternative way of shaping fibers suitable for papermaking was introduced. Impact refining, which was done simply by hitting wet fibers with a metal weight vertically, was intended to keep the fibers from shortening and to cause mostly internal fibrillation. Virgin chemical pulp, its recycled one and OCC were used in the experiment. It was noticed from the experiment that impact refining on virgin chemical pulp kept the fiber length and increased bonding properties greatly. However, in the recycled fibers from the chemical pulp, fiber length and bonding properties were decreased. In OCC, which seems to contain fractions of semi-chemical pulp and mechanical pulp (GP), and which is recycled pulp from corrugated boxes, fiber length and bonding properties were decreased disastrously. We believe recycled cellulosic fibers (recycled chemical pulp and OCC in this case), which went through hornification, were less resistant to the mechanical impact than virgin chemical pulp. For virgin chemical pulp, impact refining allowed no significant fiber length shortening, high WRV, and high mechanical strength.

Testing for Competition in the Korean Petroleum Refining Industry (유가자유화에 따른 국내 정유산업의 경쟁도 분석 -구조적 모형과 비구조적 모형의 비교-)

  • Oh, Sunah;Heo, Eunnyeong
    • Environmental and Resource Economics Review
    • /
    • v.15 no.1
    • /
    • pp.51-69
    • /
    • 2006
  • This paper analyze the degree of competitiveness of the refining industry after price liberalization. We use two well-known methods: the first is Bresnahan (1982) and Lau (1982) method that estimates a structural model consisting of a demand relation and supply relation and the second is Panzar and Rosse (1987) method that estimates non structural model of the sum of elasticities of gross revenue with respect to input prices. Results from two models show mixed sign, however, our results indicate that price liberalization improved the degree of competitiveness.

  • PDF

The Synthesis and Hydraulic properties of Calcium Sulfo Aluminate(CSA) derived from Secondary Refining Slag. (제강 2차 정련 슬래그를 재활용한 칼슘설포알루미네이트(CSA) 합성 및 수화 특성)

  • Seo, Chang Woo;Kim, Seon-Hyo;Ko, Sang Jin;Kim, Sang Hyun;Jo, Kyu Young
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.7
    • /
    • pp.437-442
    • /
    • 2008
  • The synthesis and hydration of Calcium Sulfo Aluminate[$3CaO{\cdot}3Al_2O_3{\cdot}CaSO_4(C_4A_3{\overline{S}})$, CSA cement utilizing secondary steelmaking refining slags is studied for recycling the discarded steel plant wastes to meet the environmental requrations imposed on the steel industry. Raw materials of secondary refining slag, lime sludge, gypsum and bauxite were prepared to be sintered at $1,250^{\circ}C$. The sintered samples were hydrated for 1, 3 and 7 days to evaluate the mineralogical and physico-mechanical properties. The hydration products evaluated with the aid of SEM and XRD analyses confirmed the formation and the continuing growth of ettringite phase with the further hydration times, which plays a role in developing the early strength and the expansion properties of cements. The physico-mechanical properties of hydrated CSA products employing the recycled steelmaking refining slags determined in terms of compressive strength and linear expansion of hydrated products are found to be superior to those of the Ordinary Portland Cement(OPC) or the other commercial CSA cements.

Effects of Pulp Pre-treatment and Grinder Clearance on the Manufacturing Characteristics of Microfibrillated Cellulose (펄프의 전처리 및 그라인더 간격이 MFC 제조 특성에 미치는 영향)

  • Yong, Seong Moon;Kwak, Gun Ho;Cho, Byoung-Uk;Lee, Yong Kyu;Won, Jong Myoung
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.2
    • /
    • pp.61-69
    • /
    • 2015
  • A number of researches have been carried out regarding the utilization of nanocellulose(crystalline nanocellulose, microfibrillated cellulose, nanofibrillated cellulose) for the manufacture of various kinds of composites and functional products. However, only few research works on the manufacturing characteristics of nanocellulose could be found, although some companies started already the production of nanocellulose in commercial scale. However, the most important thing in commercializing of production and utilization of nanocellulose is to develop the economical and efficient process. Thus, this study was carried out in order to investigate the effects of refining, alkaline pre-treatment and grinder clearance on the characteristics of microfibrillated cellulose and energy consumption. There was no significant differences in crystalline index with the degree of microfibrillation. The initial fibrillation could be improved by refining pre-treatment, but its effect was not observed anymore since the fibrillation was done up to certain level by grinding. Refining pre-treatment did not improved the energy efficiency. Alkaline pre-treatment can be helpful because the swelling of pulp fiber will facilitate fibrillation. It was found that the decrease in grinder clearance was helpful to improve the energy efficiency.