• Title/Summary/Keyword: Refinement Algorithm

Search Result 183, Processing Time 0.023 seconds

Adaptive mesh refinement for 3-D hexahedral element mesh by iterative inserting zero-thickness element layers (무두께 요소층을 이용한 육면체 격자의 반복적 적응 격자 세분)

  • Park C. H.;Yang D. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.79-82
    • /
    • 2004
  • In this study, a new refinement technique for 3-dimensional hexahedral element mesh is proposed, which is aimed at the control of mesh density. With the proposed scheme the mesh is refined adaptively to the elemental error which is estimated by 'a posteriori' error estimator based on the energy norm. A desired accuracy of an analysis i.e. a limit of error defines the new desired mesh density map on the current mesh. To obtain the desired mesh density, the refinement procedure is repeated iteratively until no more elements to be refined exist. In the algorithm, at first the regions of mesh to be refined are defined and, then, the zero-thickness element layers are inserted into the interfaces between the regions. All the meshes in the regions, in which the zero-thickness layers are inserted, are to be regularized in order to improve the shape of the slender elements on the interfaces. This algorithm is tested on a simple shape of 2-d quadrilateral element mesh and 3-d hexahedral element mesh. A numerical example of elastic deformation of a plate with a hole shows the effectiveness of the proposed refinement scheme.

  • PDF

A new adaptive mesh refinement strategy based on a probabilistic error estimation

  • Ziaei, H.;Moslemi, H.
    • Structural Engineering and Mechanics
    • /
    • v.74 no.4
    • /
    • pp.547-557
    • /
    • 2020
  • In this paper, an automatic adaptive mesh refinement procedure is presented for two-dimensional problems on the basis of a new probabilistic error estimator. First-order perturbation theory is employed to determine the lower and upper bounds of the structural displacements and stresses considering uncertainties in geometric sizes, material properties and loading conditions. A new probabilistic error estimator is proposed to reduce the mesh dependency of the responses dispersion. The suggested error estimator neglects the refinement at the critical points with stress concentration. Therefore, the proposed strategy is combined with the classic adaptive mesh refinement to achieve an optimal mesh refined properly in regions with either high gradients or high dispersion of the responses. Several numerical examples are illustrated to demonstrate the efficiency, accuracy and robustness of the proposed computational algorithm and the results are compared with the classic adaptive mesh refinement strategy described in the literature.

Polygonal finite element modeling of crack propagation via automatic adaptive mesh refinement

  • Shahrezaei, M.;Moslemi, H.
    • Structural Engineering and Mechanics
    • /
    • v.75 no.6
    • /
    • pp.685-699
    • /
    • 2020
  • Polygonal finite element provides a great flexibility in mesh generation of crack propagation problems where the topology of the domain changes significantly. However, the control of the discretization error in such problems is a main concern. In this paper, a polygonal-FEM is presented in modeling of crack propagation problems via an automatic adaptive mesh refinement procedure. The adaptive mesh refinement is accomplished based on the Zienkiewicz-Zhu error estimator in conjunction with a weighted SPR technique. Adaptive mesh refinement is employed in some steps for reduction of the discretization error and not for tracking the crack. In the steps that no adaptive mesh refinement is required, local modifications are applied on the mesh to prevent poor polygonal element shapes. Finally, several numerical examples are analyzed to demonstrate the efficiency, accuracy and robustness of the proposed computational algorithm in crack propagation problems.

MLFMA for Capacitance Extraction using Adaptive Triangular Mesh

  • Kim, Han;Ahn, Chang-Hoi
    • Journal of electromagnetic engineering and science
    • /
    • v.1 no.1
    • /
    • pp.78-82
    • /
    • 2001
  • For fast capacitance computation, a simple mesh refinement technique on MLFMA(Multi-Level Fast Multipole Algorithm) is proposed The triangular meshes are refined mainly in the area which has heavy charge density. The technique is applied to the capacitance extraction of three dimensional conductors. The results show good convergence with comparable accuracy. An adaptive technique concerned with MLFMA is useful to reduce computation time and the number of elements without additional computational efforts in large three dimensional problems.

  • PDF

Wave information retrieval algorithm based on iterative refinement (반복적 보정에 의한 파랑정보 추출 기법)

  • Kim, Jin-soo;Lee, Byung-Gil
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.21 no.1
    • /
    • pp.7-15
    • /
    • 2016
  • Ocean wave parameters are important for safety and efficiency of operation and routing of marine traffic. In this paper, by using X-band marine radar, we try to develop an effective algorithm for collecting ocean surface information such as current velocity, wave parameters. Specifically, by exploiting iterative refinement flow instead of using fixed control schemes, an effective algorithm is designed in such a way that it can not only compute efficiently the optimized current velocity but also introduce new cost function in an optimized way. Experimental results show that the proposed algorithm is very effective in retrieving the wave information compared to the conventional algorithms.

Refinement and Evaluation of Korean Diagnosis Related Groups (한국형진단명기준환자군의 개선과 평가)

  • 강길원;박하영;신영수
    • Health Policy and Management
    • /
    • v.14 no.1
    • /
    • pp.121-147
    • /
    • 2004
  • Since the pilot program for a DRG-based prospective payment system was introduced in 1997, the performance of KDRGs has been one of hotly debated issues. The objectives of this study are to refine the classification algorithm of the KDRGs and to assess the improvement achieved by the refinement. The U.S. Medicare DRGs version 17.0 and the Australian Refined DRGs version 4.1 were reviewed to identify areas of possible impro-vement. Refined changes in the classification and result of date analyses were submitted to a panel of 48 physicians for their reviews and suggestions. The refinement was evaluated by the variance reduction in resource utilization achieved by the KDRG The database of 2,182,168 claims submitted to the Health Insurance Review Agency during 2002 was used for evaluation. As the result of the refinement, three new MDCs were introduced and the number of ADEGs increased from 332 to 674. Various age splits and two to four levels of severity classification for secondary diagnoses were introduced as well. A total of 1,817 groups were defined in the refined KDRGs. The variance reduction for charges of all patients increased from 48.2% to 53.6% by the refinement, and from 65.6% to 73.1% for non-outlier patients. The r-square for length of stays of all patients was increased from 28.3% to 32.6%, and from 40.4% to 44.9% for non-outlier patients. These results indicated a significant improvement in the classification accuracy of the KDRG system.

A Semantic Video Object Tracking Algorithm Using Contour Refinement (윤곽선 재조정을 통한 의미 있는 객체 추적 알고리즘)

  • Lim, Jung-Eun;Yi, Jae-Youn;Ra, Jong-Beom
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.37 no.6
    • /
    • pp.1-8
    • /
    • 2000
  • This paper describes an algorithm for semantic video object tracking using semi automatic method. In the semi automatic method, a user specifies an object of interest at the first frame and then the specified object is to be tracked in the remaining frames. The proposed algorithm consists of three steps: object boundary projection, uncertain area extraction, and boundary refinement. The object boundary is projected from the previous frame to the current frame using the motion estimation. And uncertain areas are extracted via two modules: Me error-test and color similarity test. Then, from extracted uncertain areas, the exact object boundary is obtained by boundary refinement. The simulation results show that the proposed video object extraction method provides efficient tracking results for various video sequences compared to the previous methods.

  • PDF

An Efficient Method for Multiple Sequence Alignment using Subalignment Refinement (부분서열정렬 개선 기법을 사용한 효율적인 복수서열정렬에 관한 알고리즘)

  • Kim, Jin;Jung, Woo-Cheol;Uhmn, Saang-Yong
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.9
    • /
    • pp.803-811
    • /
    • 2003
  • Multiple sequence alignment is a useful tool to identify the relationships among protein sequences. Dynamic programming is the most widely used algorithm to obtain multiple sequence alignment with optimal cost. However, dynamic programming cannot be applied to certain cost function due to its drawback and cannot be used to produce optimal multiple sequence alignment. We propose sub-alignment refinement algorithm to overcome the problem of dynamic programming. Also we show proposed algorithm can solve the problem of dynamic programming efficiently.

A Direct Expansion Algorithm for Transforming B-spline Curve into a Piecewise Polynomial Curve in a Power Form. (B-spline 곡선을 power 기저형태의 구간별 다항식으로 바꾸는 Direct Expansion 알고리듬)

  • 김덕수;류중현;이현찬;신하용;장태범
    • Korean Journal of Computational Design and Engineering
    • /
    • v.5 no.3
    • /
    • pp.276-284
    • /
    • 2000
  • Usual practice of the transformation of a B-spline curve into a set of piecewise polynomial curves in a power form is done by either a knot refinement followed by basis conversions or applying a Taylor expansion on the B-spline curve for each knot span. Presented in this paper is a new algorithm, called a direct expansion algorithm, for the problem. The algorithm first locates the coefficients of all the linear terms that make up the basis functions in a knot span, and then the algorithm directly obtains the power form representation of basis functions by expanding the summation of products of appropriate linear terms. Then, a polynomial segment of a knot span can be easily obtained by the summation of products of the basis functions within the knot span with corresponding control points. Repeating this operation for each knot span, all of the polynomials of the B-spline curve can be transformed into a power form. The algorithm has been applied to both static and dynamic curves. It turns out that the proposed algorithm outperforms the existing algorithms for the conversion for both types of curves. Especially, the proposed algorithm shows significantly fast performance for the dynamic curves.

  • PDF

A New All-Hexahedral Refinement Technique by Automatic Expansion of Zero-Thickness Element Layers (무두께 요소층 확장을 이용한 육면체 격자의 세분화 기법)

  • 박철현;양동열
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.323-326
    • /
    • 2003
  • This paper presents a new algorithm that can refine hexahedral elements while maintaining the appropriate connectivity. In the algorithm, at first the regions of mesh to be refined are defined and, then, the zero-thickness element layers inserted into the interfaces between the regions. All the meshes in the regions, in which the zero-thickness layers are inserted, are to be regularized in order to improve the shape of the slender elements on the interfaces. This algorithm is applied to the analysis of plastic deformation process. The results show that the refined mesh gives smaller relative errors than the original mesh.

  • PDF