• Title/Summary/Keyword: Reference prior

Search Result 371, Processing Time 0.023 seconds

Noninformative priors for the common shape parameter of several inverse Gaussian distributions

  • Kang, Sang Gil;Kim, Dal Ho;Lee, Woo Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.1
    • /
    • pp.243-253
    • /
    • 2015
  • In this paper, we develop the noninformative priors for the common shape parameter of several inverse Gaussian distributions. Specially, we want to develop noninformative priors which satisfy certain objective criterion. The probability matching priors and reference priors of the common shape parameter will be developed. It turns out that the second order matching prior does not exist. The reference priors satisfy the first order matching criterion, but Jeffrey's prior is not the first order matching prior. We showed that the proposed reference prior matches the target coverage probabilities in a frequentist sense through simulation study, and an example based on real data is given.

Noninformative priors for the log-logistic distribution

  • Kang, Sang Gil;Kim, Dal Ho;Lee, Woo Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.1
    • /
    • pp.227-235
    • /
    • 2014
  • In this paper, we develop the noninformative priors for the scale parameter and the shape parameter in the log-logistic distribution. We developed the first and second order matching priors. It turns out that the second order matching prior matches the alternative coverage probabilities, and is a highest posterior density matching prior. Also we revealed that the derived reference prior is the second order matching prior for both parameters, but Jerffrey's prior is not a second order matching prior. We showed that the proposed reference prior matches the target coverage probabilities in a frequentist sense through simulation study, and an example based on real data is given.

Development of Noninformative Priors in the Burr Model

  • Cho, Jang-Sik;Kang, Sang-Gil;Baek, Sung-Uk
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.1
    • /
    • pp.83-92
    • /
    • 2003
  • In this paper, we derive noninformative priors for the ratio of parameters in the Burr model. We obtain Jeffreys' prior, reference prior and second order probability matching prior. Also we prove that the noninformative prior matches the alternative coverage probabilities and a HPD matching prior up to the second order, respectively. Finally, we provide simulated frequentist coverage probabilities under the derived noninformative priors for small and moderate size of samples.

  • PDF

Bayesian Inference for Stress-Strength Systems

  • Chang, In-Hong;Kim, Byung-Hwee
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.27-34
    • /
    • 2005
  • We consider the problem of estimating the system reliability noninformative priors when both stress and strength follow generalized gamma distributions. We first derive Jeffreys' prior, group ordering reference priors, and matching priors. We investigate the propriety of posterior distributions and provide marginal posterior distributions under those noninformative priors. We also examine whether the reference priors satisfy the probability matching criterion.

  • PDF

DEVELOPING NONINFORMATIVE PRIORS FOR THE FAMILIAL DATA

  • Heo, Jung-Eun;Kim, Yeong-Hwa
    • Journal of the Korean Statistical Society
    • /
    • v.36 no.1
    • /
    • pp.77-91
    • /
    • 2007
  • This paper considers development of noninformative priors for the familial data when the families have equal number of offspring. Several noninformative priors including the widely used Jeffreys' prior as well as the different reference priors are derived. Also, a simultaneously-marginally-probability-matching prior is considered and probability matching priors are derived when the parameter of interest is inter- or intra-class correlation coefficient. The simulation study implemented by Gibbs sampler shows that two-group reference prior is slightly edge over the others in terms of coverage probability.

Noninformative priors for the ratio of the scale parameters in the half logistic distributions

  • Kang, Sang-Gil;Kim, Dal-Ho;Lee, Woo-Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.4
    • /
    • pp.833-841
    • /
    • 2012
  • In this paper, we develop the noninformative priors for the ratio of the scale parameters in the half logistic distributions. We develop the first and second order matching priors. It turns out that the second order matching prior matches the alternative coverage probabilities, and is a highest posterior density matching prior. Also we reveal that the one-at-a-time reference prior and Jeffreys' prior are the second order matching prior. We show that the proposed reference prior matches the target coverage probabilities in a frequentist sense through simulation study, and an example based on real data is given.

Bayesian Hypothesis Testing for the Ratio of Two Quantiles in Exponential Distributions

  • Kang, Sang-Gil;Kim, Dal-Ho;Lee, Woo-Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.3
    • /
    • pp.833-845
    • /
    • 2007
  • When X and Y have independent exponential distributions, we develop a Bayesian testing procedure for the ratio of two quantiles under reference prior. The noninformative prior such as reference prior is usually improper which yields a calibration problem that makes the Bayes factor to be defined up to a multiplicative constant. So we develop a Bayesian testing procedure based on fractional Bayes factor and intrinsic Bayes factor. We show that the posterior density under the reference prior is proper and propose the Bayesian testing procedure for the ratio of two quantiles using fractional Bayes factor and intrinsic Bayes factor. Simulation study and a real data example are provided.

  • PDF

ARMA Model Identification Using the Bayes Factor

  • Son, Young-Sook
    • Journal of the Korean Statistical Society
    • /
    • v.28 no.4
    • /
    • pp.503-513
    • /
    • 1999
  • The Bayes factor for the identification of stationary ARM(p,q) models is exactly computed using the Monte Carlo method. As priors are used the uniform prior for (\ulcorner,\ulcorner) in its stationarity-invertibility region, the Jefferys prior and the reference prior that are noninformative improper for ($\mu$,$\sigma$\ulcorner).

  • PDF

Noninformative Priors for the Common Intraclass Correlation Coefficient

  • Kim, Dal-Ho
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.2
    • /
    • pp.189-199
    • /
    • 2011
  • In this paper, we develop the noninformative priors for the common intraclass correlation coefficient when independent samples drawn from multivariate normal populations. We derive the first and second order matching priors. We reveal that the second order matching prior dose not match alternative coverage probabilities up to the second order and is not a HPD matching prior. It turns out that among all of the reference priors, one-at-a-time reference prior satisfies a second order matching criterion. Our simulation study indicates that one-at-a-time reference prior performs better than the other reference priors in terms of matching the target coverage probabilities in a frequentist sense.

Default Bayesian testing for normal mean with known coefficient of variation

  • Kang, Sang-Gil;Kim, Dal-Ho;Le, Woo-Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.2
    • /
    • pp.297-308
    • /
    • 2010
  • This article deals with the problem of testing mean when the coefficient of variation in normal distribution is known. We propose Bayesian hypothesis testing procedures for the normal mean under the noninformative prior. The noninformative prior is usually improper which yields a calibration problem that makes the Bayes factor to be defined up to a multiplicative constant. So we propose the objective Bayesian hypothesis testing procedures based on the fractional Bayes factor and the intrinsic Bayes factor under the reference prior. Specially, we develop intrinsic priors which give asymptotically same Bayes factor with the intrinsic Bayes factor under the reference prior. Simulation study and a real data example are provided.