References
- Ahmad, M. I., Sinclair, C. D. and Werritty, A. (1988). Log-logistic flood frequency analysis. Journal of Hydrology, 98, 205-212. https://doi.org/10.1016/0022-1694(88)90015-7
- Bennett, S. (1983). Log-logistic regression models for survival data. Journal of Royal Statistical Society C, 32, 165-171.
- Berger, J. O. and Bernardo, J. M. (1989). Estimating a product of means : Bayesian analysis with reference priors. Journal of the American Statistical Association, 84, 200-207. https://doi.org/10.1080/01621459.1989.10478756
- Berger, J. O. and Bernardo, J. M. (1992). On the development of reference priors (with discussion). In Bayesian Statistics IV, edited by J. M. Bernardo, et al., Oxford University Press, Oxford, 35-60.
- Bernardo, J. M. (1979). Reference posterior distributions for Bayesian inference (with discussion). Journal of Royal Statistical Society B, 41, 113-147.
- Cox, D. R. and Reid, N. (1987). Orthogonal parameters and approximate conditional inference (with discussion). Journal of Royal Statistical Society B, 49, 1-39.
- Datta, G. S. and Ghosh, M. (1995). Some remarks on noninformative priors. Journal of the American Statistical Association, 90, 1357-1363. https://doi.org/10.1080/01621459.1995.10476640
- Datta, G. S. and Ghosh, M. (1996). On the invariance of noninformative priors. The Annal of Statistics, 24, 141-159. https://doi.org/10.1214/aos/1033066203
- Datta, G. S., Ghosh, M. and Mukerjee, R. (2000). Some new results on probability matching priors. Calcutta Statistical Association Bulletin, 50, 179-192. https://doi.org/10.1177/0008068320000306
- Dey, A. K. and Kundu, D. (2010). Discriminating between the log-normal and log-logistic distributions. Communications in Statistics-Theory and Methods, 39, 280-292.
- DiCiccio, T. J. and Stern, S. E. (1994). Frequentist and Bayesian Bartlett correction of test statistics based on adjusted profile likelihood. Journal of Royal Statistical Society B, 56, 397-408.
- Fisk, P. R. (1961). The graduation of income distributions. Econometrica, 29, 171-185. https://doi.org/10.2307/1909287
- Geskus, R. B. (2001). Methods for estimating the AIDS incubation time distribution when data of seroconversion is censored. Statistics in Medicine, 20, 795-812. https://doi.org/10.1002/sim.700
- Ghosh, J. K. and Mukerjee, R. (1992). Noninformative priors (with discussion). In Bayesian Statistics IV, edited by J. M. Bernardo, et al., Oxford University Press, Oxford, 195-210.
- Ghosh, J. K. and Mukerjee, R. (1995). Frequentist validity of highest posterior density regions in the presence of nuisance parameters. Statistics & Decisions, 13, 131-139.
- Lawless, J. F. (1982). Statistical models and methods for lifetime data, John Wiley and Sons, New York.
- Kang, S. G. (2011). Noninformative priors for the common mean in log-normal distributions. Journal of the Korean Data & Information Science Society, 22, 1241-1250.
- Kang, S. G., Kim, D. H. and Lee, W. D. (2012). Noninformative priors for the ratio of the scale parameters in the half logistic distributions. Journal of the Korean Data & Information Science Society, 23, 833-841. https://doi.org/10.7465/jkdi.2012.23.4.833
- Kang, S. G., Kim, D. H. and Lee, W. D. (2013a). Noninformative priors for the shape parameter in the generalized Pareto distribution. Journal of the Korean Data & Information Science Society, 24, 171-178. https://doi.org/10.7465/jkdi.2013.24.1.171
- Kang, S. G., Kim, D. H. and Lee, W. D. (2013b). Noninformative priors for the ratio of parameters of two Maxwell distributions. Journal of the Korean Data & Information Science Society, 24, 643-650. https://doi.org/10.7465/jkdi.2013.24.3.643
- Kim, D. H., Kang, S. G. and Lee, W. D. (2009). Noninformative priors for Pareto distribution. Journal of the Korean Data & Information Science Society, 20, 1213-1223.
- Mukerjee, R. and Dey, D.K. (1993). Frequentist validity of posterior quantiles in the presence of a nuisance parameter : Higher order asymptotics. Biometrika, 80, 499-505. https://doi.org/10.1093/biomet/80.3.499
- Mukerjee, R. and Ghosh, M. (1997). Second order probability matching priors. Biometrika, 84, 970-975. https://doi.org/10.1093/biomet/84.4.970
- Mukerjee, R. and Reid, N. (1999). On a property of probability matching priors: Matching the alternative coverage probabilities. Biometrika, 86, 333-340. https://doi.org/10.1093/biomet/86.2.333
- Robson, A. and Reed, D. (1999). Statistical procedures for flood frequency estimation. In Flood Estimation Handbook, 3, Institute of Hydrology, Wallingford, UK.
- Shoukri, M. M., Mian, I. U. M. and Tracy, C. (1988). Sampling properties of estimators of log-logistic distribution with application to Canadian precipitation data. Canadian Journal of Statistics, 16, 223-236. https://doi.org/10.2307/3314729
- Stein, C. (1985). On the coverage probability of confidence sets based on a prior distribution. Sequential Methods in Statistics, Banach Center Publications, 16, 485-514. https://doi.org/10.4064/-16-1-485-514
- Tibshirani, R. (1989). Noninformative priors for one parameter of many. Biometrika, 76, 604-608. https://doi.org/10.1093/biomet/76.3.604
- Welch, B. L. and Peers, H. W. (1963). On formulae for confidence points based on integrals of weighted likelihood. Journal of Royal Statistical Society B, 25, 318-329.
Cited by
- Noninformative priors for product of exponential means vol.26, pp.3, 2015, https://doi.org/10.7465/jkdi.2015.26.3.763
- Noninformative priors for linear function of parameters in the lognormal distribution vol.27, pp.4, 2016, https://doi.org/10.7465/jkdi.2016.27.4.1091
- Noninformative priors for the common shape parameter of several inverse Gaussian distributions vol.26, pp.1, 2015, https://doi.org/10.7465/jkdi.2015.26.1.243
- Default Bayesian one sided testing for the shape parameter in the log-logistic distribution vol.26, pp.6, 2015, https://doi.org/10.7465/jkdi.2015.26.6.1583
- Default Bayesian testing for scale parameters in the log-logistic distributions vol.26, pp.6, 2015, https://doi.org/10.7465/jkdi.2015.26.6.1501
- Noninformative priors for linear combinations of exponential means vol.27, pp.2, 2016, https://doi.org/10.7465/jkdi.2016.27.2.565