DOI QR코드

DOI QR Code

Noninformative priors for the log-logistic distribution

  • Kang, Sang Gil (Department of Computer and Data Information, Sangji University) ;
  • Kim, Dal Ho (Department of Statistics, Kyungpook National University) ;
  • Lee, Woo Dong (Department of Asset Management, Daegu Haany University)
  • Received : 2013.10.15
  • Accepted : 2014.01.03
  • Published : 2014.01.31

Abstract

In this paper, we develop the noninformative priors for the scale parameter and the shape parameter in the log-logistic distribution. We developed the first and second order matching priors. It turns out that the second order matching prior matches the alternative coverage probabilities, and is a highest posterior density matching prior. Also we revealed that the derived reference prior is the second order matching prior for both parameters, but Jerffrey's prior is not a second order matching prior. We showed that the proposed reference prior matches the target coverage probabilities in a frequentist sense through simulation study, and an example based on real data is given.

Keywords

References

  1. Ahmad, M. I., Sinclair, C. D. and Werritty, A. (1988). Log-logistic flood frequency analysis. Journal of Hydrology, 98, 205-212. https://doi.org/10.1016/0022-1694(88)90015-7
  2. Bennett, S. (1983). Log-logistic regression models for survival data. Journal of Royal Statistical Society C, 32, 165-171.
  3. Berger, J. O. and Bernardo, J. M. (1989). Estimating a product of means : Bayesian analysis with reference priors. Journal of the American Statistical Association, 84, 200-207. https://doi.org/10.1080/01621459.1989.10478756
  4. Berger, J. O. and Bernardo, J. M. (1992). On the development of reference priors (with discussion). In Bayesian Statistics IV, edited by J. M. Bernardo, et al., Oxford University Press, Oxford, 35-60.
  5. Bernardo, J. M. (1979). Reference posterior distributions for Bayesian inference (with discussion). Journal of Royal Statistical Society B, 41, 113-147.
  6. Cox, D. R. and Reid, N. (1987). Orthogonal parameters and approximate conditional inference (with discussion). Journal of Royal Statistical Society B, 49, 1-39.
  7. Datta, G. S. and Ghosh, M. (1995). Some remarks on noninformative priors. Journal of the American Statistical Association, 90, 1357-1363. https://doi.org/10.1080/01621459.1995.10476640
  8. Datta, G. S. and Ghosh, M. (1996). On the invariance of noninformative priors. The Annal of Statistics, 24, 141-159. https://doi.org/10.1214/aos/1033066203
  9. Datta, G. S., Ghosh, M. and Mukerjee, R. (2000). Some new results on probability matching priors. Calcutta Statistical Association Bulletin, 50, 179-192. https://doi.org/10.1177/0008068320000306
  10. Dey, A. K. and Kundu, D. (2010). Discriminating between the log-normal and log-logistic distributions. Communications in Statistics-Theory and Methods, 39, 280-292.
  11. DiCiccio, T. J. and Stern, S. E. (1994). Frequentist and Bayesian Bartlett correction of test statistics based on adjusted profile likelihood. Journal of Royal Statistical Society B, 56, 397-408.
  12. Fisk, P. R. (1961). The graduation of income distributions. Econometrica, 29, 171-185. https://doi.org/10.2307/1909287
  13. Geskus, R. B. (2001). Methods for estimating the AIDS incubation time distribution when data of seroconversion is censored. Statistics in Medicine, 20, 795-812. https://doi.org/10.1002/sim.700
  14. Ghosh, J. K. and Mukerjee, R. (1992). Noninformative priors (with discussion). In Bayesian Statistics IV, edited by J. M. Bernardo, et al., Oxford University Press, Oxford, 195-210.
  15. Ghosh, J. K. and Mukerjee, R. (1995). Frequentist validity of highest posterior density regions in the presence of nuisance parameters. Statistics & Decisions, 13, 131-139.
  16. Lawless, J. F. (1982). Statistical models and methods for lifetime data, John Wiley and Sons, New York.
  17. Kang, S. G. (2011). Noninformative priors for the common mean in log-normal distributions. Journal of the Korean Data & Information Science Society, 22, 1241-1250.
  18. Kang, S. G., Kim, D. H. and Lee, W. D. (2012). Noninformative priors for the ratio of the scale parameters in the half logistic distributions. Journal of the Korean Data & Information Science Society, 23, 833-841. https://doi.org/10.7465/jkdi.2012.23.4.833
  19. Kang, S. G., Kim, D. H. and Lee, W. D. (2013a). Noninformative priors for the shape parameter in the generalized Pareto distribution. Journal of the Korean Data & Information Science Society, 24, 171-178. https://doi.org/10.7465/jkdi.2013.24.1.171
  20. Kang, S. G., Kim, D. H. and Lee, W. D. (2013b). Noninformative priors for the ratio of parameters of two Maxwell distributions. Journal of the Korean Data & Information Science Society, 24, 643-650. https://doi.org/10.7465/jkdi.2013.24.3.643
  21. Kim, D. H., Kang, S. G. and Lee, W. D. (2009). Noninformative priors for Pareto distribution. Journal of the Korean Data & Information Science Society, 20, 1213-1223.
  22. Mukerjee, R. and Dey, D.K. (1993). Frequentist validity of posterior quantiles in the presence of a nuisance parameter : Higher order asymptotics. Biometrika, 80, 499-505. https://doi.org/10.1093/biomet/80.3.499
  23. Mukerjee, R. and Ghosh, M. (1997). Second order probability matching priors. Biometrika, 84, 970-975. https://doi.org/10.1093/biomet/84.4.970
  24. Mukerjee, R. and Reid, N. (1999). On a property of probability matching priors: Matching the alternative coverage probabilities. Biometrika, 86, 333-340. https://doi.org/10.1093/biomet/86.2.333
  25. Robson, A. and Reed, D. (1999). Statistical procedures for flood frequency estimation. In Flood Estimation Handbook, 3, Institute of Hydrology, Wallingford, UK.
  26. Shoukri, M. M., Mian, I. U. M. and Tracy, C. (1988). Sampling properties of estimators of log-logistic distribution with application to Canadian precipitation data. Canadian Journal of Statistics, 16, 223-236. https://doi.org/10.2307/3314729
  27. Stein, C. (1985). On the coverage probability of confidence sets based on a prior distribution. Sequential Methods in Statistics, Banach Center Publications, 16, 485-514. https://doi.org/10.4064/-16-1-485-514
  28. Tibshirani, R. (1989). Noninformative priors for one parameter of many. Biometrika, 76, 604-608. https://doi.org/10.1093/biomet/76.3.604
  29. Welch, B. L. and Peers, H. W. (1963). On formulae for confidence points based on integrals of weighted likelihood. Journal of Royal Statistical Society B, 25, 318-329.

Cited by

  1. Noninformative priors for product of exponential means vol.26, pp.3, 2015, https://doi.org/10.7465/jkdi.2015.26.3.763
  2. Noninformative priors for linear function of parameters in the lognormal distribution vol.27, pp.4, 2016, https://doi.org/10.7465/jkdi.2016.27.4.1091
  3. Noninformative priors for the common shape parameter of several inverse Gaussian distributions vol.26, pp.1, 2015, https://doi.org/10.7465/jkdi.2015.26.1.243
  4. Default Bayesian one sided testing for the shape parameter in the log-logistic distribution vol.26, pp.6, 2015, https://doi.org/10.7465/jkdi.2015.26.6.1583
  5. Default Bayesian testing for scale parameters in the log-logistic distributions vol.26, pp.6, 2015, https://doi.org/10.7465/jkdi.2015.26.6.1501
  6. Noninformative priors for linear combinations of exponential means vol.27, pp.2, 2016, https://doi.org/10.7465/jkdi.2016.27.2.565